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Abstract. This paper addresses the problem of norm adaptation using
Bayesian reinforcement learning. We are concerned with the effective-
ness of adding prior domain knowledge when facing environments with
different settings as well as with the speed of adapting to a new environ-
ment. Individuals develop their normative framework via interaction with
their surrounding environment (including other individuals). An agent
acquires the domain-dependent knowledge in a certain environment and
later reuses them in different settings. This work is novel in that it rep-
resents normative behaviors as probabilities over belief sets. We propose
a two-level learning framework to learn the values of normative actions
and set them as prior knowledge, when agents are confident about them,
to feed them back to their belief sets. Developing a prior belief set about
a certain domain can improve an agent’s learning process to adjust its
norms to the new environment’s dynamics. Our evaluation shows that a
normative agent, having been trained in an initial environment, is able
to adjust its beliefs about the dynamics and behavioral norms in a new
environment. Therefore, it converges to the optimal policy more quickly,
especially in the early stages of learning.

Keywords: Learning and Adaptation::Single agent Learning, Agree-
ment Technologies::Norms

1 Introduction

Norms or conventions routinely guide the choice of behaviors in human societies,
and conformity to norms reduces social frictions, relieves the cognitive load on
humans, and facilitates coordination and decision making [22][18]. Norms differ
in various situations depending on the environment’s dynamics, behaviors of
other agents (including peers and superiors), and many other factors affecting
them. For instance, in a crisis situation caused by flooding or an earthquake,
first responders are responsible to control and (sometimes) enforce some rules to
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the people such as evacuating the area or preventing people from looting shops.
However, a first responder might decide to let people break into a drug store
(against his work policy constraints) in order to get urgent access to medical
equipments.

When facing different environments, agents tend to spend some time un-
derstanding and learning the interaction patterns to adapt to the new setting.
Developing a prior belief set about a certain domain, can improve an agent’s
learning process to adjust its normative behaviors with regards to the new envi-
ronment’s dynamics. An agent’s ability to quickly adjust its beliefs and norms to
different environments highly affects its performance of learning and, as a result,
increases the overall utility of the agent. However, given the unpredictability of
the world makes finding an appropriate set of norms or rules to initially code
into agents is a highly difficult task. Our purpose is to overcome this difficulty
by applying learning techniques to equip agents with proper tools for learning
new norms in every different environment. Regardless of the type and origins of
norms, they play an important part in forming and alternating beliefs in human
societies, as actions are derived from the beliefs about the normative behaviors
[20].

This paper proposes a two-level learning algorithm to extract the behavioral
norms and reuse them as domain knowledge in future environmental settings.
Determining where and when to extract norms is done using probability dis-
tributions of the state-action pairs. We would like to investigate the following
questions: How effective is adding prior domain knowledge when facing envi-
ronments with different settings? Having learned some behavioral norms, how
quickly does an agent adapt to an environment?

The remainder of this paper is as follows: Section 2 gives a broad overview
of the literature on norms, beliefs, and Bayesian model learning. In Section
3, we propose our two-level learning framework to extract norms using the
Bayesian model learning technique and then discuss our algorithm for adap-
tation to change in new environments. Section 4 demonstrates our experimental
results to find answers for the motivating questions. Finally, we give a conclusion
to our work and propose the future work and possible directions for this area of
research in Section 5.

2 Background and Related Work

2.1 Norms and Beliefs

Since norms arise based on interactions with the environment, they are very
likely to be altered when there is a change in interaction patterns, goals, and
beliefs. Also, conditions will change, which may lead to different behavior of the
agents by affecting their belief sets. Norm autonomy is the highest level of au-
tonomy, and it refers to social impacts on agents’ choices. At this level, agents
choose which goals are legitimate to pursue based on a given set of norms. Such
agents (called norm autonomous agents or deliberative normative agents [7][4])
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may judge the legitimacy of their own and other agents’ goals. Autonomy at
this level is defined as the agent’s capability to change its norm system when
a goal conflict arises , thereby changing priorities of goals, abandoning a goal,
generating another goal, etc [25]. Dignum [14][15] provides another view of au-
tonomy at the norm level, allowing the agents to violate a norm in order to
adhere to a private goal that they consider to be more profitable, including in
such consideration the negative value of the repercussions such a violation may
have. Less restrictive sets of social norms may be chosen by agents, however, an
agent is only allowed to deviate from a norm if it cannot act under the current
limitations [5][6].

From the learning perspective, beliefs can be viewed as emergence of norms
(from a game-theoretic point of view) and acceptance of norms (individual level
of agents) [24][10][9]. While researchers have studied the emergence of norms
in agent populations, they typically assume access to a significant amount of
global knowledge. However, there is no guarantee that agents always have access
to global knowledge. In addition, in some cases the global knowledge can be
inconsistent and inaccurate due to the changes that happen over time. Behavioral
norms are domain-dependent and context-sensitive norms, meaning that in every
situation based on the signals one perceives from its environment these norms
can be changed or altered. In the absence of a centralized authority or when
facing an environment with different settings, an agent should adjust its belief
set to be able to act properly.

Sen et al. [22] studied the emergence of norms in a game-theoretic approach
where individual agents learn social norms by interactions with other agents.
Moreover, in [21], the emergence of social norms in heterogenous agent societies
has been studied to explore the evolution of social conventions based on repeated
distributed interactions between agents in a society. The authors considered that
norms evolve as agents learn from their interactions with other agents in the so-
ciety using multi-agent reinforcement learning algorithms [22]. Most of the work
in this area fall short in considering norms as changeable elements depending on
the environment. Norm adaptation uses an agent’s domain knowledge to adjust
more quickly in new environments. Unlike [16] that studies norm adaptation and
effects of thinking in norms using computational approaches, we are interested
in using the very natural way of learning used by humans. In Bayesian rein-
forcement learning (RL), agents are able to gather information about different
environments and settings. After many experiences, this information leads to
knowledge of the domain in which the agents are mostly working.

2.2 Bayesian Model Learning

The Bayesian approach is a principled, non problem-specific approach that pro-
vides an optimal solution to the action choice problem in RL. The optimal so-
lution to the RL action selection problem or optimal learning, is the pattern of
behavior that maximizes performance over the entire history of interactions of
an agent with the world [12][11][8]. With Bayesian learning techniques, an agent
stores a probability distribution over all possible models, in the form of a belief
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state [11]. The underlying (unknown) Markov Decision Process (MDP), thus,
induces a belief-state MDP. The transition function from belief state to belief
state is defined by Bayes’ rule, with the observations being the state and reward
signals arising from each environmental transition.

Assume an agent is learning to control a stochastic environment modeled as
an MDP, which is a 4-tuple 〈S,A, PT , PR〉 with finite state and action sets S,
A, transition dynamics PT and reward model PR. The agent is charged with
constructing an optimal Markovian policy π : S 7→ A that maximizes the ex-
pected sum of future discounted rewards over an infinite horizon. Letting V ∗(s)
at each s ∈ S denote the optimal expected discounted reward achievable from
state s and Q∗(s, a) denote the value of executing action a at state s, we have
the standard Bellman equations [1]:

V ∗(s) = maxa∈AQ
∗(s, a) (1)

Q∗(s, a) = EPR(s,a,r)[r|s, a] + γ
∑
s′ ∈ S

PT (s, a, s′)V ∗(s′) (2)

At each step in the environment, the learner maintains an estimated MDP
〈S,A, P̂T , P̂R〉 based on an experience tuple of 〈s, a, t, r〉; that is, at each step
in the environment the learner starts at state s, chooses an action a, and then
observes a new state t and a reward of r. This MDP then can be solved at each
stage approximately or precisely depending on an agent’s familiarity with state
and reward distributions.

A Bayesian agent estimates a model of uncertainty about the environment
(discovering PT and PR) and takes these uncertainties into account when calcu-
lating value functions. In theory, once the uncertainty is fully incorporated into
the model, acting greedily with respect to these value functions is the optimal
policy for the agent, the policy that will enable it to optimize its performance
while learning. Bayesian exploration is the optimal solution to the exploration-
exploitation problem [19][2].

In the Bayesian approach a belief state over the possible MDPs is maintained.
A belief state defines a probability density. Bayesian methods assume some prior
density P over possible dynamics D and reward distributions R, which is up-
dated with an experience tuple 〈s, a, t, r〉. Given this experience tuple, one can
compute a posterior belief state using Bayes’ rule. We are looking for the pos-
terior over reward model distribution and also the posterior for the transition
model, given an observed history of H. Considering H to be the state-action
history of the observer, an agent can compute the posterior P (T,R|H) to de-
termine an appropriate action at each stage. As the density P is the product
of two other densities P (T s,a) and P (Rs,a), that is, the probability density of
choosing action a in state s and the probability density of getting the reward
of r by choosing an action a when in state s, we should make an assumption to
simplify this calculation.

Based on [11], our prior satisfies parameter independence, and thus the prior
distribution over the parameters of each local probability term in the MDP
is independent of the prior over the others. This means that the density P is
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factored over R and T with P (T |R) being the product of independent local
densities P (T s,a) and P (Rs,a) for each transition and each reward distribution.
It turns out that this form is maintained as we incorporate evidence. The learning
agent uses the formulation of [11] to update these estimates using Bayes’ rule:

P (T s,a|Hs,a) = zP (Hs,a|T s,a)P (T s,a)

P (Rs,a|Hs,a) = zP (Hs,a|Rs,a)P (Rs,a)
(3)

where Hs,a is the history of taking action a in state s, and z is a normalizing
constant.

It has been assumed that each density P (T s,a) and P (Rs,a) is a Dirichlet
[13] as the transition and reward models are discrete multinomials. These priors
are conjugate, and thus the posterior after each observed experience tuple will
also be a Dirichlet distribution [11][8].

3 The Proposed Two-level Learning Framework

Two types of learning are considered in this framework: first, learning while the
agent is exploring and exploiting rewards in each episode3 of the same simulation
(in the same environment) and trying to learn the environment’s dynamics,
and second, a high-level approach to capture the domain’s specific normative
behaviors. This framework is able to learn the system’s dynamics, specifically the
environment’s dynamics and interaction patterns for each setting. A key factor
for optimizing the performance of agents is to provide them with knowledge
about the dynamics of the environment and behavioral norms.

Behavioral norms about the environment’s dynamics can be extracted us-
ing the probability distribution of each state-action pair after agents get into a
reasonable confidence level about their beliefs. Afterwards, this knowledge gets
updated and added to all the previous data gained in the past experiences. The
overall knowledge represents the agent’s belief about the normative actions and
can be incorporated into agents as prior knowledge [17].

Every domain has its specific set of norms (known as behavioral norms)
that can be generally valid in other environments. There is a mutual connection
between behavioral norms and domain-dependent knowledge in reinforcement
learning. Norms can be extracted through reinforcement learning (RL), and RL
can be improved by incorporating behavioral norms as prior probability distri-
butions into learning agents.

3.1 Adapting to Change

Traditionally a norm, be it an obligation, prohibition or permission, is defined as
a rigid value - yet real life exhibits normative behavior more flexible and context

3 An episode is every trial in which agents begin in the start state and finishes in the
goal state.
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Fig. 1: Simple sketch of the two-level learning framework

dependent since the participants in social situations can behave unpredictably.
Take for example the case of a frustrated player after a game. The social norm
would dictate this player to shake hands with the winning team, yet he may well
choose to ignore the norm under the circumstance. Therefore it makes sense to
set the normative framework using a probabilistic model that would enable the
agent behavior to be adjusted to the particular situation by assigning to each
norm a probability reflecting the degree by which this norm may be followed or
not by the agents operating under the respective framework. As agents interact
with other agents as well as with the environment in the particular context
[21] they can attune their behavior by changing the values of the probabilities
assigned to the norms governing them, in a continuous adaptation process.

This is a probabilistic model of expressing norms where a prohibited norm is
a norm with low level probability to happen, however, its probability is not nec-
essarily 0 (although it can be close to 0). Similarly, an obligated norm can have
a probability close to 1. By modeling norms as probabilistic values over a belief
set, we are able to extract these values via reinforcement learning techniques.

3.2 Transition and Reward Densities

In our Bayesian learning model, each density P (T s,a) and P (Rs,a) is a Dirich-
let. However, Dirichlet distributions make the implementation and tracking of
the algorithm quite hard, since the transition model will be sparse with only
a few states that can result from a particular action at a particular state. If
the state space is large, learning with a Dirichlet prior can require many exam-
ples to recognize that most possible states are highly unlikely [11][23]. To avoid
these problems, we use beta distributions for every state and action. In Bayesian
statistics, it can be seen as the posterior distribution of the parameter p of a
binomial distribution after observing α− 1 independent events with probability
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p and β − 1 with probability 1 − p, if there is no other information regarding
the distribution of p. We consider a binomial probability distribution for every
state-action pair. These distributions actually show us the number of times in
which every state-action pair succeeds or fails during the simulation. We need
to maintain the number of times, N(s

a−→ s′), state s is successful to make tran-

sition to s′ when action a is chosen, and similarly, N(s
a−→ r) for rewards. With

the prior distributions over the parameters of the MDP, these counts define a
posterior distribution over MDPs.

3.3 Dynamic Norm Adaptation with Bayesian Reinforcement
Learning

Agents gain knowledge about the environment’s dynamics using dynamic pro-
gramming iterations and updates. By visiting every state or choosing actions,
agents gradually build up their knowledge about the environment as probability
distributions over state-action pairs. This information can be considered to be
incomplete or false during the simulation until agents are confident about their
beliefs. From the exploration-exploitation perspective, this confidence is gained
when the agent has knowledge about most of the states and the permissible ac-
tions in them or the value of each action in every state. Thus, agents are said to
be confident about their beliefs when (1) The algorithm has converged into an
optimal policy in the learning process(or cumulative reward becomes steady in
the recent episodes), and (2) Most of the states have been visited by the agent.

In the first condition, it is not really easy to understand when an algorithm
will converge to an optimal policy. It needs complicated and time-consuming
mathematical calculations. Bayesian dynamic programming is proved to con-
verge to an optimal policy using some optimization techniques [3]. However,
checking this criterion is a complicated process. The algorithm 1 shows the steps
within each episode.

We introduce an element to check the confidence level at the end of each
episode. When an episode is finished, the goal state is reached, and we are able
to look at the cumulative reward gained in that episode by our agent. If this
cumulative reward is in a steady state in recent episodes, it is a good measure
to be sure that our Bayesian algorithm is in a reliable state, meaning that the
algorithm is in equilibrium.

The amount of cumulative reward or the number of steps to the goal is
not solely a good metric to measure the level of confidence [17]. What also
is important for agents is to make sure that they have at least some sort of
sufficient information about the current world and the majority of states. This
can be measured by counting the number of explored states so far, indicating
how many states have been visited by an agent.

The level of exploration (LOE) is defined simply as follows:

LOE =
E

N
(4)
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Algorithm 1 Generating Behavioral Norms

loop
at each episode n
for all s ∈ S ∧ a ∈ A do
V ∗(s) = maxa∈AQ

∗(s, a)
Q∗(s, a) = EPR(s,a,r)[r|s, a] + γ

∑
s′ ∈ S PT (s, a, s′)V ∗(s′)

end for
for all s ∈ S, a ∈ A do
P (T s,a|Hs,a) = zP (Hs,a|T s,a)P (T s,a)
P (Rs,a|Hs,a) = zP (Hs,a|Rs,a)P (Rs,a)

end for
LOE ← E

N

if LOE > threshold then
if n > k then

if CRn = [
∑n−1

i=n−k CRi/k]± (1− LOE + ε) then
priornew = posteriorold + priorold

end if
end if

end if
end loop

where E is the number of explored states so far in the simulation, and N
is the estimated total number of states. We assume that the size of state space
is known by the agent in the beginning of each episode. LOE is always smaller
than or equal to 1. As it gets closer to 1, more states of the environment have
been explored.

It is proposed that the agent can be confident about its beliefs when LOE >
0.9 and CRn satisfies equation 5.

CRn = [

n−1∑
i=n−k

CRi/k]± (1− LOE + ε) (5)

where CRn is the cumulative reward gained in the nth episode, and k is a
desired number of recent episodes. Based on every experiment and the size of
the state-space, one can decide to consider k previous cumulative rewards to
average them (In this paper k = 5).

The cumulative reward gained in each episode can be different even after
converging to the optimal policy, as the agent is always in the learning process
and may explore some other states. Therefore, the value of CRn should fall into a
plus/minus interval to be acceptable. This interval depends on the value of LOE.
If not many of the states have been explored so far, the interval gets larger. The
cumulative rewards become closer and closer to each other when the majority of
states have been covered. In a nutshell, the more states that have been explored
by an agent, the smaller the interval gets. Although LOE rarely reaches 1, the ε
in this formula makes sure that there is always an interval even when 1− LOE
is equal to 0.
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When an agent meets these two conditions and becomes confident about its
information on normative behaviors, it should simply update its belief state and
add this newly learned knowledge to its knowledge base.

3.4 Updating Prior Knowledge as Norms

Updating the Bayes parameter estimate with new information is easy by using
the concept of a conjugate prior. The parameter estimate obtained from the
previous episodes should be combined with the estimates an agent already has
about its states and actions. Essentially, a conjugate prior allows agents to rep-
resent the Bayes parameter estimation formula in simple terms using the beta
parameters a and b:

aposterior = aprior + adata

bposterior = bprior + bdata
(6)

We consider state-action pairs as binomial probability distributions showing
us the number of times each state-action succeeds or fails. The beta parameters
in beta distributions are the number of successes and the number of failures. The
posterior is simply given by adding the prior parameter and data parameter (the
number of successful transitions from state s to s′ under a). Updating norms is
exactly the same as updating posteriors. Agents are continuously building and
updating their posteriors using the aforementioned process. As this information
is obtained by agents interacting in the environment (to solve a problem or to
pursue a goal), it is representative of the environment’s dynamics and norms.
When an agent is in a confident level about its knowledge, it keeps a copy of
the reward and the transition model and then updates its posterior by replac-
ing the posterior gained so far with the prior distribution of tested data (data
parameter).

4 Experimental Results and Analysis

Although real-world problems of norm generation are much more complicated,
representing the world and its dynamics in a simple way can help us show a
proof of concept. Furthermore, every decision-making situation where a learning
agent needs to take an action under uncertainty can be easily mapped into a
belief-state MDP. As such, using the proposed techniques, an agent will be able
to solve the MDP, learn the model of the environment, and generate norms if the
confidence level is reached. The implementation framework that is used to code
these ideas is the one developed by Dr. Sutton in the RLAI lab4. This framework
provides the basic tools to implement any desired RL algorithm.

Figure 2 shows a sample map. The agent can move left, right, up, or down by
one square in the maze. Every action is representative of a behavioral norm. If

4 http://rlai.cs.ualberta.ca/
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it attempts to move into a wall, its action has no effect. The problem is to find a
navigation path from the start state (‘S’) to the goal state (‘G’) with the fewest
possible steps and the highest cumulative reward. The agent also should gather
as much information as possible about the environment and its dynamics. When
it reaches the goal, the agent receives a reward equal to 1, and the problem is
then reset. Any step has a small negative reward of −0.05. The agent’s goal is
to find the optimal policy that maximizes its cumulative reward. The problem is
made more difficult by assuming that the agent occasionally “slips” and moves
in a direction perpendicular to the desired direction (with probability 0.1 in each
perpendicular direction).

Fig. 2: A sample map showing changes in the environment

4.1 Experiments

Here we present experiments by which we determine the effectiveness of the
two-level reinforcement learning framework to dynamically generate appropri-
ate norms. An agent’s behavior in any environment is tightly dependent on its
understanding of the surrounding environment.

Three different experiments are considered with two agents: a Bayesian agent
with no prior knowledge about the dynamics and behavioral norms, and a
Bayesian agent with some training in a different environment under the same
domain. The environment’s dynamics and its behavioral norms will be changed
to study which agent better performs when confronting a new setting.

An interesting approach to study this difference is to consider the differences
based on the percentage of changes in the settings. This way we are able to study
the effectiveness of the learned normative behaviors in different environments.
Nonetheless, as it was emphasized earlier, the domain in which the agent is
finding an optimal policy to the goal state will remain the same. In these exper-
iments, changes can occur in every element of the environment such as blocked
states, goal states, start states, etc. Three different experiments have been done
based on the percentage of changes:
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(a) goal change

(b) 20% change

(c) 50% change + goal change

Fig. 3: Different percentages of change (averages over 10 runs)
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– Only change in the goal state

– 20% change in the environment

– 50% change of dynamics + change in the goal state

Figure 3.a shows the performance of both agents with regard to cumulative
rewards gained in each episode. The results are averages over 10 runs. Both of
the agents find the best policy quickly in fewer than 15 trials. The normative
agent starts up with a worse result compared to the Bayesian agent with no
prior. This is due to the fact that the normative agent needs some exploration
to adapt its beliefs to the new environment’s dynamics, so it has to update its
beliefs about the environment. However, after the first exploration of the map
it rapidly finds the best policy and converges after 5 trials, as opposed to the
Bayesian agent with no training.

In the very first trials of learning, the normative agent starts with finding
the new optimal policy. On the other hand, some fluctuations in early phases
show the agent’s attempts to explore the new environment and find out the
dynamics as well as exploiting the already known states. In the early learning
process, the increase in performance of the normative agent with prior knowledge
is statistically significant, compared to the Bayesian agent with no knowledge
about the normative actions. A trained agent learns the probability of finding
the goal state in each zone of the map so the agent focuses more on the areas
that have been learned to be more probable in containing the goal state. In
this example, this leads the agent to focus more on the central areas and avoid
exploring behind the blocked states in the right and left sides of the map.

As shown in Figure 3.c , we notice some increased drop in the value of cu-
mulative reward in the first episodes because the agent is adapting its belief
state under the new dynamics. However, the value of cumulative reward rises
more rapidly and converges to the value of the optimal policy after about 5
episodes. This proves the effectiveness of having prior knowledge about the
domain-dependent norms even if the environment changes over time and the
agent wants to start learning in a world with a different dynamics and different
normative system. A paired t-test demonstrates that the difference in means be-
tween the normative agent and the agent with no prior knowledge is statistically
significant (p = 0.022022831).

4.2 Lessons Learned

The performance of an agent, whether it has prior knowledge about the norma-
tive behaviors or not, converges at some point at a reasonable pace. However,
an important factor is to avoid any random exploratory behavior at the begin-
ning of a simulation. As we can see in Figure 4, the normative agent performs
better both in gaining cumulative reward and finding the optimal policy to the
goal. The more similar the new environment is to the environment where the
agent has been trained, the faster and better it can adjust its beliefs to the new
situations.
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One interesting observation is that whenever the goal state is very different
from the one learned by the agent, the agent has to violate or alter its beliefs to
the new situations. Thus, this adjustment process makes the agent override some
of the behavioral norms and spend some time exploring the new environment.
However, as the agent carries its domain knowledge from the previous experi-
ments, it easily adapts its normative system after just a couple of episodes. The
more it takes for the agent to find the best policy, the more it should update/alter
its belief systems on behavioral norms.

Fig. 4: The comparison between different values of change

The figure shows that the agent performs better in an environment with 20%
change in its dynamics. On the other hand, when the agent has to perform in
an environment with 50% change, it takes more stages at the beginning for the
agent to adjust its knowledge to the new environment. Moreover, in the early
stages of learning the agent gets a highly negative reward as the goal has been
changed, and the agent needs to explore and unlearn its current beliefs.

5 Conclusion and Future Work

In this paper, we addressed the problem of norm adaptation using Bayesian
reinforcement learning. Individuals develop their normative framework via in-
teraction with their surrounding environment (including other individuals). De-
veloping a prior belief set about a certain domain can improve an agent’s learning
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process to adjust its normative behaviors with regards to the new environment’s
dynamics. Our evaluation demonstrated that even in the environments with 50
percent of change in the states and the goal state, agents can quickly adapt to
new settings using the practiced prior knowledge in a different environment, and
thus, the performance of the agent increases, especially in the early stages of the
learning process.

As a future work, we would like to run the same experiments in an environ-
ment with lower percentage of similarities. It would be interesting to show how
fast agents can adapt to the new environment, and if having some knowledge
about the domain will help the learning agents improve under different dynam-
ics. We will experiment environments with higher percentage of differences in
terms of states, goals, and transition functions to point out a threshold where
after that the agent will perform similar to an agent with no prior knowledge.

Another direction might be to consider inconsistency in norms when norms
have different origins. As it was shown in [15], the problem of these conflicts is
not that they are general (logical) conflicts between the norms, but that they
are only conflicts in very specific situations or even in ways in which norms are
fulfilled. An important question is how one can handle these conflicting norms
when agents confront groups or societies with completely opposite norms.
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