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Abstract.
This paper proposes fuzzy entropy minimization as an emergent property of holonic structures. When applied in the context of multi-agent systems this emergent property leads to automatic clustering of the agents into holonic organizations. When modeling enterprises as software agents the property turns into an inherent characteristic of holonic virtual organizations that enables clustering the best collaborative partners and/or resources at all levels of a holonic (virtual) enterprise. Applicability of the method to on-line reconfiguration of dynamic virtual organizations is proven by a simulation example.
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1. Introduction: Emergent Holonic Structures 

A holonic structure is a holarchy of collaborative entities, where the entity is regarded as a holon. (Here the term entity is used in a broad, generic manner: entity, system, ‘thing’, agent). The term holon was coined by Artur Koestler to denominate entities that exhibit simultaneously both autonomy and cooperation capabilities which demand balance of the contradictory forces that define each of these properties on a behavioral level. One main characteristic of a holon is its multiple granularity manifested through replication into self-similar structures at multi-resolution levels. Such a heterarchical decomposition turns out into a nested hierarchy of fractal entities – named holarchy. A holonic entity has three levels of granularity, Fig. 1 [1]: 
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1.1. Global inter-entity collaborative level

At this level several holon-entitys cluster into a collaborative holarchy to produce a product or service. The clustering criteria support maximal synergy and efficiency.  Traditionally this level was regarded as a mostly static chain of customers and suppliers through which the workflow and information was moving from the end customer that required the product to the end supplier tat delivered it. In the holonic entity the supply chain paradigm is replaced by the collaborative holarhy paradigm (Fig. 1). With each collaborative partner modeled as an agent that encapsulates those abstractions relevant to the particular cooperation, a dynamic virtual cluster (Fig. 1) emerges that can be configured on-line according to the collaborative goals (e.g. by finding the best partners for the collaboration). Such a dynamic collaborative holarchy can cope with unexpected disturbances (e.g. replace a collaborative partner that can not deliver within the deadline) through on-line re-configuration of the open system it represents. It provides on-line order distribution across the available partners as well as deployment mechanisms that ensure real-time order error reporting and on-demand order tracking. 

1.1. Intra-entity level

Once each entity has undertaken responsibility for the assigned part of the work, it has to organize in turn its own internal resources to deliver on time according to the coordination requirements of the collaborative cluster. Planning and dynamic scheduling of resources at this level enable functional reconfiguration and flexibility via (re)selecting functional units, (re)assigning their locations, and (re)defining their interconnections (e.g., rerouting around a broken machine, changing the functions of a multi-functional machine). This is achieved through a replication of the dynamic virtual clustering mechanism having now each resource within the entity cloned as an agent that abstracts those functional characteristics relevant to the specific task assigned by the collaborative holarchy to the partner. Re-configuration of schedules to cope with new orders or unexpected disturbances (e.g. when a machine breaks) is enabled through re-clustering of the agents representing the actual resources of the entity, Fig. 2. The main criteria for resource (re)allocation when (re)configuring the schedules are related to cost minimization achieved via multi-criteria optimization.  
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1.3. Machine (physical agent) level

This level is concerned with the distributed control of the physical machines that actually perform the work. To enable agile manufacturing through the deployment of self-reconfiguring, intelligent distributed automation elements each machine is cloned as an agent that abstracts those parameters needed for the configuration of the holonic control system managing the distributed production
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Fig. 4: Physical and Logical Levels of a Holonic Entity
A major role in the structural organization of any holonic entity is played by the mediator agent (Fig. 4). In the sequel we will prove that by embedding fuzzy entropy minimization within the mediator agent at the logical level - a perfect holonic structure at the physical level – is reached.
2. A Fuzzy Model for Holonic Structures

2.1. The Approach

A multi-agent system (MAS) is regarded as a dynamical system in which agents exchange information organized through reasoning into knowledge about the assigned goal [2]. Optimal knowledge corresponds to an optimal level of information organization and distribution among the agents. It seems natural to consider the entropy as a measure of the degree of order in the information spread across the multi-agent system [3]. This information is usually uncertain, requiring several ways of modeling to cope with the different aspects of the uncertainty. Fuzzy set theory offers an adequate framework [4] that requires the use of generalized fuzzy entropy [5]. 

One can envision the agents in the MAS as being under the influence of an information “field” which drives the inter-agent interactions towards achieving “equilibrium” with other agents with respect to this entropy [4]. The generalized fuzzy entropy is the measure of the “potential” of this field and equilibrium for the agents under this influence corresponds to an optimal organization of the information across the MAS with respect to the assigned goal’s achievement. When the goal of the MAS changes (due to unexpected events, such as need to change a partner, machine break-down, etc.) the equilibrium point changes as well inducing new re-distribution of information among the agents with new emerging agent interactions. This mechanism enabling dynamic system re-configuration with re-distribution of priorities is the essence of the emergent dynamic holonic structure. In the next sub-sections of this section, we will prove that when the agents clustering into a holonic structure the MAS reaches equilibrium, which ensures optimal accomplishment the assigned goal (task). 

2.2 Vagueness Modeling in MAS – The Problem

It is already well known that among the other uncertainty facets, vagueness deals with information that is inconsistent [6]. In the context of MAS, this means that the clear distinction between a possible plan reaching the imposed goal and a plan leading, on the contrary, to a very different goal is hardly distinguishable. We call partition the clustering configuration in which the union of all clusters is identical to the agent set when clusters are not overlapping. If the clusters overlap (i.e. some agents are simultaneously in two different clusters) the clustering configuration is called a cover. We define a plan as being the succession of all states through which the MAS transitions until it reaches its goal. Each state of the MAS is described by a certain clustering configuration covering the agents set.

If the information spread across the MAS is vague, one can construct only a collection of source-plans (i.e. sets of clustering configurations considered as sources for plans) associated with a specific global goal. There are two main differences between a plan and a source-plan. First, in a plan, the occurrence of the clustering configurations in time is clearly specified, whereas in a source-plan it is usually unknown. Secondly, in a plan, the configurations may be repeating while the source-plan includes only different configurations that can be extracted to construct a plan, following some strategy. Our model is starts with the following hypotheses: 

H1
Although the multi-agent system (MAS) is a collection of deterministic entities (the agents), its overall behavior could be stochastic, due to external and internal perturbations.
H2
No prior knowledge about the MAS is available but the general purpose of the system (thus, at least a global goal that can be reached in a stable manner is known) and the number of agents (denoted by 
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). 

H3
Structures of clustering configurations are observable and their occurrences can be counted during the MAS evolution from the initial state to a final one, for any given global goal. 


Starting from this uncertain information, the problem is to provide fuzzy models of MAS, useful in selecting the least uncertain (the least vague) source-plan.

2.3. Mathematical Formulation of the Problem

Denote by 
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In this framework, we aim to construct a measure of uncertainty, 
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 (from “vagueness”), fuzzy-type, real-valued, defined on the set of all source-plans of 
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The cost function 
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 required in problem (1) will be constructed by using a measure of fuzziness [6]. We present hereafter the steps of this construction.

3. Emergence of Holonic Structures

3.1. Constructing fuzzy relations between agents

We model agent interactions through fuzzy relations considering that two agents are in relation if they exchange information. As two agents exchanging information are as well in the same cluster one can describe the clustering configurations using these fuzzy relations. The family of fuzzy relations, 
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This matrix is symmetric (obviously, if 
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Theorem 1. Let 
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This result shows that the relation 
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 defined by the agents’ inclusion in the same cluster is uniquely assigned to the clustering configuration 
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Consequently, we can construct an elementary fuzzy (binary) relation 
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If 
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Usually, the fuzzy union in (3) is computed using the max operator (although some other definitions of fuzzy union could be considered as well). This involves the membership matrix of 
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where “
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The fuzzy transitivity, expressed as follows:
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is the most difficult to ensure. Here “
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The equations (5) or (6) suggest an interesting procedure to construct similarity relations starting from proximity ones, by using the notion of transitive closure. A transitive closure of a fuzzy relation 
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 is, by definition, the minimal transitive fuzzy relation that includes 
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Interestingly, the composition of fuzzy relations preserves both reflexivity and symmetry, if the relations are not necessarily identical, and it conserves even the transitivity, if relations are identical. This is due to the following result (see the proof in Appendix): 

Theorem 2. Let 
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1. If 
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2. If 
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3. If 
[image: image115.wmf]R

Q

=

 and 
[image: image116.wmf]R

 is a transitive relation, 
[image: image117.wmf]C

 is also transitive.

[image: image184.wmf]k

R


It is very important to preserve the proximity property of relation 
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 by composition with itself, because the following simple procedure allows us to generate a similarity relation:

The first step consists of 2 operations: one matrix fuzzy multiplication and one fuzzy union (expressed by the max and min operators, as in (6) and (4)). The second step is actually a simple and efficient test of fuzzy transitivity, for any fuzzy relation, avoiding the inequality (5) or (6). Similarity it is also important in this framework, since it can reveal the holonic behavior of MAS.

So far, a bijective map (according to Theorem 1) between 
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3.2. The Measure of Fuzziness

The next step aims to construct a measure of fuzziness over the fuzzy relations on 
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One important class consists of measures that evaluate “the fuzziness” of a fuzzy set by taking into consideration both the set and its (fuzzy) complement. From this large class, we have selected the Shannon measure, derived from the generalized Shannon’s function: 
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This function has a unique maximum (equal by 
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If the argument of this function is a probability distribution, it is referred to as Shannon entropy. If the argument is a membership function defining a fuzzy set, it is refereed to as (Shannon) fuzzy entropy. Denote the fuzzy entropy by 
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Obviously, this function also has a unique maximum and all minima null, with respect to variables 
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Two main reasons motivate this choice. First, 
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 helps us make a direct connection between “how fuzzy” is a set and “how much uncertainty” it contains. Thus, since 
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 computes the quantity of information of an informational entity, say a fuzzy set, as the estimated uncertainty that the entity contains, the minimally fuzzy sets will subsequently contain the minimally uncertain information
. Secondly, the “total ignorance” (or uncertain) information is expressed by the unique maximum of 
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, whereas multiple minimum points (actually, the apexes of the hyper-cube) belong to a “perfect knowledge zone” (as less uncertain information as possible). Between “total ignorance” (which, interestingly, is unique) and “perfect knowledge zone” (which is always multiple) there are many intermediate points associated to different degrees of uncertainty in knowledge about the entity. 

Moreover, a force driving towards knowledge can be determined [4], by computing the gradient of Shannon fuzzy entropy. It is interesting to remark that the amplitude of this force (its norm), expressed as: 
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increases very rapidly in the vicinity of any “perfect knowledge” point (see Fig. 6(b) above). 

3.3. The Uncertainty Measure

Although a unique maximum of Shannon fuzzy entropy (9) exists, as proven by (10), we are searching for one of its minima. The required measure of uncertainty, 
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, is obtained by composing 
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 is not a measure of fuzziness, because its definition domain is the set of source-plans (crisp sets) and not the set of fuzzy relations between agents (fuzzy sets). But, since 
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is a bijection, the optimization problem (1) is equivalent with: 
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The new problem (11) does not require a special optimization algorithm, since 
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 is a finite number and all minima, although multiple, are null and localized in apexes of hyper-cube 
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 is very large. In this case, genetic algorithms [8] or annealing algorithms [9] can be used to find the minimum. According to the previous interpretations, 
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 is the least fuzzy (minimally fuzzy), i.e. the least uncertain source-plan from the family and the most attracted by the knowledge zone. Its corresponding optimum fuzzy relation 
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 might be useful in the construction of a least uncertain plan of MAS.

3.4. Emergence of Holonic Clusters

Once one pair (
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,
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) has been selected by solving the problem (11) (multiple choices could be possible, since multiple minima are available), a corresponding source-plan should be identified. Two choices are possible:  

· List all the configurations of 
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 (by extracting, eventually, those configurations for which the occurrence degree vanished in 
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· Construct other source-plans by using not 
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, but 
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There is a reason for the second option. Usually, the initial available information about MAS is so vague that it is impossible to construct even consistent source-plans. This is the case, for example, when all we can set are the degrees of occurrence corresponding to clusters created only by couples of agents (as we will see in the case study, Section 4). But, it is suitable to identify at least a source-plan for problem solving. 

The main idea in constructing different source-plans is to evaluate the 
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-cuts of 
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 and to arrange them in decreasing order of their membership. This ordering is all we can specify starting from the initial information about MAS. Since the time dimension in MAS evolution was not taken into consideration when constructing the model, no time ordering criterion is yet available. For this aspect of our research see [7]. Thus, basically, plans are not constructible with this model. However, it is possible that a plan coincides with the source-plan generated in this manner (especially when the relation is a similarity one). 


The 
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According to Theorem 1, each matrix 
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 in (12) generates a unique clustering configuration of agents over 
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. Thus, two categories of source-plans emerge: equivalence or holonic source-plans (when 
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 is a similarity relation) and compatibility source-plans (when 
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 is only a proximity relation). 

· When the associated fuzzy relation 
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 is a similarity one, then an interesting property of the MAS is revealed: clusters are associated in order to form new clusters, as in a “clusters within clusters” holonic-like paradigm [2]. Moreover, a (unique) similarity relation 
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 can be constructed starting from the proximity relation 
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, by computing its transitive closure, following the procedure described at Step 2. A. Thus, the potential holonic structure of MAS can be revealed, even when it seems to evolve in a non-holonic manner. 

· When 
[image: image181.wmf]0
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 is only a proximity relation, tolerance (compatibility) classes can be constructed as collections of eventually overlapping clusters (covers). This time, the fact that clusters could be overlapping (i.e. one or more agents can belong to different clusters simultaneously) reveals the capacity of some agents to play multiple roles by being involved in several tasks at the same time. 

4. CONCLUSIONS

This paper has proven that fuzzy entropy minimization is the mechanism that organizes structures into holonic entities. An immediate area of application is the automatic reconfiguration of a failed structure with recovery of the holonic properties. In the context of the holonic enterprise – the main applicability is in finding the most appropriate collaborative partners in a virtual organization as well as recovery if one part of the holonic system breaks, by reorganizing the distributed system to achieve maximal efficiency. 
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1.	Compute the fuzzy relation: �EMBED Equation.3���.


If �EMBED Equation.3���, replace � EMBED Equation.3  ��� by � EMBED Equation.3  ��� and go to step 1. 


	Otherwise, �EMBED Equation.3��� is the transitive closure of the initial � EMBED Equation.3  ���.
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� 	Notice, however, that only the vagueness facet of the uncertainty is measured here. Ambiguity requires more sophisticated measures [7].
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