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Abstract—This paper proposes a socio-physical approach that
considers jointly the interaction and integration of the social
and physical views of a system to improve emergency response
and preparedness. This is accomplished through a reduction
of systemic risk, which refers to a risk that could be greater
than the sum of the risks of the individual system constituents.
Using network analysis, it is shown that the explicit socio-
physical approach yields meaningful qualitative and quantitative
differences when compared with approaches that focus on the
social and physical views in isolation. The benefits of this
proposed approach are illustrated on a case study using clustering
analysis and a proof-of-concept simulation. This new approach
leads to systemic risk reduction by enabling a more informed and
coordinated response strategy following an incident and a better
identification of possible consequences and preparation strategies
prior to an incident.

Index Terms—Clustering coefficient, emergency response and
preparedness, risk reduction, situational awareness, socio-
physical view, systemic risk.

I. INTRODUCTION

SING an integrative view of the system is instrumental

in improving emergency managers’ awareness of sys-
temic risk and in allowing them to consider appropriate risk-
reduction strategies that can leverage resources effectively to
protect critical infrastructure and services. Since risk-reduction
strategies are based implicitly on the view taken of an emer-
gency situation [1], [2], this paper proposes an encompassing
socio-physical view, which considers jointly the interaction
and integration of the social and physical views of a system.
This combined view leads to enhanced awareness of how
the system operates, increasing the potential for improved
emergency response and preparedness in the face of systemic
risk (e.g., consider a system where specific failures in one
or more of its constituents, such as a sustained electrical
power failure [3], could result not only in local impacts, but
in system-wide impacts as well).

Emergency-response efforts in major recent disasters, such
as Hurricane Katrina (2005), Deepwater Horizon (2010), and
the Japanese earthquake and tsunami (2011), have revealed
that the current uni-dimensional risk-reduction strategies are
insufficient and that there is a need for a holistic systemic
approach [4]-[6]. Traditionally, emergency-response activities,
both nationally and internationally, have focused on managing
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consequences during the aftermath of disasters with insuf-
ficient emphasis placed on developing strategies a priori to
reduce risk and minimize damage. Globally, the number of
disasters has been growing, particularly in the least-equipped
areas, where emergency preparedness efforts are constrained
by existing financial resources, among other factors [7], [8].

Besides the large-scale crises caused by natural disasters,
“normal” accidents can also lead to widespread devastation—
in particular circumstances that can trigger chain reactions, as
observed in [9]. Crises may also stem from social, economic,
and political consequences [8]. Regardless of cause, it is
imperative that emergency managers take into consideration
both the social and physical implications resulting from their
actions, allowing important interdependencies to be accounted
for prior to and following a disaster [10], [11]. Current
approaches typically focus on either the physical view [12]-
[15] or the social view [16]-[19]. However, considering the
social and physical dimensions in isolation leads not only to
a partial view of the problem space, but also to a marginal
assessment of systemic risk [20]-[22], which can have severe
implications to emergency management.

There have been several attempts to define and measure
systemic risk [20], [21], [23]. In fact, the term finds its origin
in financial systems, where it refers to “the risk that the failure
of one financial institution (as a bank) could cause other
interconnected institutions to fail and harm the economy as a
whole” (Merriam-Webster). The term has also gained in pop-
ularity following the financial crisis of 2008, as evidenced by
continued research in the area [24], and numerous quantitative
and qualitative analyses, metrics, best practices, and lessons
learned can be extracted from the financial domain [25]-[27].
Despite no single, agreed-upon definition, systemic risk has
been characterized as follows: a risk originating from multiple
sources that affects multiple agents and propogates quickly
among individual parts or constituents of the network [20]; a
risk or probability of breakdowns affecting an entire system
and not just a breakdown in individual parts or constituents, as
evidenced by correlations among most or all of the parts [28];
and, in its most general usage, a risk that shocks the system,
impairing its crucial functions [29]. In this paper, systemic risk
is described as a risk that could be greater than the sum of the
risks of the individual system constituents [20].

Networks and their interactions are frequently the cause of
the cascading failures which many attribute as “the most com-
mon mechanism by which local risks can become systemic”
[10], [30], and knowledge of the underlying properties in-
herent within different network structures can reveal different
vulnerabilities. Scale-free networks, for example, exhibit the
power-law distribution and, independent of network scale, are
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considered resilient to random attacks, yet are highly suscep-
tible to deliberate attacks [31], [32]. Such examples serve to
underscore the importance of network measures in increasing
awareness. In emergency response, for instance, the clustering
coefficient, together with connectivity, can inform emergency
managers of the structure of the network being examined,
along with its distribution patterns and underlying behaviour
[33]-[35]—all of which can prove invaluable when facing the
need to make difficult decisions (e.g., under situations with
limited resources). These measures can provide insight into
how to influence the network to reduce possible risks, making
the entire system more resilient.

In this paper, in order to objectively demonstrate the ex-
tensiveness of the explicit, combined socio-physical view in
comparison to the social and physical views in isolation, we
will use the clustering coefficient as a “measure of local
connections, or ‘cliquishness [36], [37]. It is hypothesized
that the different nodes that emerge as being critical in this
combined view will more accurately represent the critical
nodes in the system, as failure of any of these nodes will
more likely affect a larger portion of the system, potentially
resulting in systemic failure. Subsequently, it will be argued
that this new holistic viewpoint allows for a more expanded
representation and understanding of the system, particularly
with respect to interdependencies considered in the context of
emergency response and preparedness.

The remainder of the paper is structured as follows. Section
IT considers risk in emergency response and ways in which
it can be reduced in general. Section III presents the socio-
physical approach to risk reduction, in which the explicit use of
both the social and physical views (and their interconnections)
to describe and analyze a system is described. Section IV
presents the figure of merit, clustering, as a means of analyzing
the interconnections and dependencies within a system. Sec-
tion V analyzes a real-life case study involving an incident
at a university steam plant using the proposed approach.
Specifically, the clustering coefficient is calculated for different
perspectives of the system to illustrate the role of the socio-
physical view in increasing situational awareness and reducing
systemic risk in emergency response and preparedness. Section
VI proposes an extension to existing clustering coefficients
based on limitations identified during the case study in order
to determine the contribution of a single node on the entire
network. Section VII then shows how the socio-physical view
can be used to improve simulation by focusing on an important
subsystem identified in the case study. Lastly, Section VIII
concludes the paper and outlines possible direction for future
work.

II. RISK REDUCTION IN EMERGENCY RESPONSE AND
PREPAREDNESS

There are many formal and informal definitions of risk
related to emergency response, such as risk = probability x
consequence [38], [39], risk = threat X vulnerability x
consequence [40], and risk being, according to the World
Health Organization, “the probability of harmful consequences
resulting from interactions between natural or human-induced

hazards and vulnerabilities” [8]. Despite definitional variation,
local risk can be viewed, in general, as a function of haz-
ards to which a portion of the system is exposed and the
known and unknown system vulnerabilities related to it. Here
hazard refers to “any phenomenon that has the potential to
cause disruption or damage” to a system constituent, while
vulnerability refers to “the conditions determined by physi-
cal, social, economic and environmental factors or processes,
which increase the susceptibility” of a constituent [8].

Importantly, in emergency response, risk may be mitigated
by the level of preparedness which seeks to reduce vulnerabil-
ities. This includes such actions as raising awareness, which
lessens the effect of the hazard on identified vulnerabilities,
investing in critical infrastructure and training programs, and
developing emergency-response plans. Thus, risk reduction
also relates to the response phase: the more prepared one is
to respond to a particular vulnerability-inducing hazard, the
less impact this vulnerability will have on the constituent and
the system as a whole. Furthermore, emergency response and
preparedness can be approached reactively and proactively. A
reactive phase seeks to combat the effects of a hazard after it
has occurred, whereas a proactive phase strives to prepare for
a hazard (or emergency) a priori. As an example, a proactive
approach might seek to install a new power generator at a
critical hub in the system to provide more time for electricity
to be restored in the event of an emergency, while a reactive
approach, following an emergency, seeks to restore the system
to a point of stability. According to the description above, any
increase in the level of (response and) preparedness will reduce
the level of risk.

Considering now systemic risk, where the failure of one
system constituent may lead to the failure of the entire system,
necessitates assessing not only the various local risks, but
also the interactions among system constituents. This inter-
connected vulnerability, if examined comprehensively, implies
that there are many unique combinations of hazards and
vulnerabilities which can negatively impact the system [41].
In this case, the vulnerability of a specific constituent is not
considered in isolation; instead, vulnerability depends on the
view under which it is assessed. If viewed from only a physical
(or social) perspective, for instance, different vulnerabilities
might be assessed than if considered from a socio-physical
perspective. The vulnerability of one constituent, if viewed
from a holistic perspective, may involve the synergistic effect
of vulnerabilities across all constituents in the entire system.
In this way, the more interconnections and vulnerability the
system constituents have, proportionately the greater the risk
for system failure.

Based on this understanding of systemic risk, an invest-
ment in a system constituent during the proactive phase
that increases the level of preparedness (e.g., training and
infrastructure investment) will lead to a decrease in overall
systemic risk. Likewise, following a hazard or emergency,
improved understanding of how the hazard impacts system
constituents during the reactive phase will also diminish the
overall systemic risk, as critical constituents can be secured
first before moving onto secondary constituents.

While we have no control over natural disasters, work
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has been done to reduce the likelihood of human-induced
hazards, particularly those resulting from accidents [9], [42]-
[44]. Reason, for example, posits that accidents can be traced
to one or more of the following areas—organizational influ-
ences, unsafe supervision, preconditions for unsafe acts, and
unsafe acts themselves—and offers the Swiss Cheese Model
for analogy, noting that holes exist in each of these areas
(like in different slices of the cheese), but that accidents
occur when the holes momentarily align [42], [43]. Reason
further suggests that these holes are the result of two types
of failures: active failures, which are humans performing
unsafe actions; and latent failures, which are actions stemming
from organizational and technical decisions that permit active
failures to occur (e.g., poor safety culture [42], [43]). STAMP
(Systems-Theoretic Accident Model and Processes) similarly
seeks to improve safety through embedded control structures
that enforce system constraints, as it views accidents as
resulting from either a failure to enforce a system constraint
or a failure to identify a constraint during system design
[44]. Even so, others contend that some safety interventions
are not always beneficial. Perrow’s Normal Accident Theory,
for instance, among other things considers the interaction of
safety devices and complexity, and argues that in systems with
high complexity and tight coupling, the addition of safety
measures may actually increase the risk of human-induced
hazards [9]. Nevertheless, these all point to the importance of
considering hazards from a holistic perspective that includes
the human factor, and the current paper builds off this work
by proposing the explicit use of the socio-physical approach
in better equipping emergency managers to prepare for and
respond to hazards.

ITII. SOCIO-PHYSICAL APPROACH TO RISK REDUCTION

In emergency response, systems have generally been viewed
fragmentally [2], [41], thus lessening the overall understanding
of the system and therein contributing to systemic risk. These
views typically capture either the physical (e.g., critical in-
frastructure) or the social (e.g., organizations, individuals, and
policies) system dimensions. The proposed approach, however,
takes into consideration an integrated socio-physical perspec-
tive, where both the physical and social system constituents
and their interactions are explicitly captured. By being aware
of this broader perspective, each stakeholder in the system
increases their awareness of how their service(s) affect others
and how others’ services affect them.

Generally, stakeholders, depending on their interests and
responsibilities, have different views of what constitutes “the
system.” For example, municipal technicians might be directly
involved only in the maintenance of the physical structures
of a city (e.g., electricity and water), police and ambulance
in the safety of the citizens and the condition of the roads,
and businesses might be concerned primarily about reducing
the down-time resulting from the emergency. These partial
views, if kept in isolation, result in an incomplete picture of
the system. This is why an explicit, combined, socio-physical
view of the system that takes into account these partial views
is imperative for increasing awareness during an emergency.

This would be particularly relevant to an emergency manager
in charge of responding to the incident and to stakeholders in
charge of maintenance and upgrades for preparedness.

Having an expanded representation of the system enables its
constituents to be enumerated and the interrelationships within
and across views to be clearly identified. This makes it possible
for the effect of a hazard on the entire system to be more
readily assessed. Furthermore, critical constituents, which may
affect the system more than others, can be recognized in
advance without considering a specific hazard. This can be
used in the proactive phase to determine an appropriate pre-
paredness strategy for a host of possible hazards, and similarly,
the same information can be employed in the reactive phase to
strategically prioritize resource allocation during response—
both of which would assist in reducing risk. This can be
supported by using existing, well-known risk analysis tech-
niques, such as those presented in [45]. In the failure mode
and effects analysis (FMEA) approach, for example, different
failure modes, effects, and probabilities can be associated with
system constituents in a collaborative fashion to improve the
overall understanding of the system-of-interest [46], [47].

When constructing the socio-physical view, which con-
stituents and interactions are added to “the system” is more
often a matter of art than of science. However, the following
are some rules of thumb which we have found useful. (Note
that several tools exist that can be used to assist in the creation
of the socio-physical diagram, including UML diagramming
tools, Python’s NetworkX package, and Systemigrams [48].)
For the physical view, start by considering those constituents
that provide vital services, such as electricity, before moving
onto secondary constituents like office buildings. Also, con-
sider grouping similar constituents together; for example, if
considering a university, several residence buildings could be
grouped into a single constituent: on-campus housing. The
interactions between the constituents should be directional
and take the form constituent X provides [some service] to
constituent Y. Once again, begin by focusing on the vital
services, as the diagram can quickly become cluttered. For
the social view, consider the human constituents that make
the system what it is. Continuing with the university example,
we can consider students and teaching and operations staff
immediately. We can then add the interactions between the
constituents in the same way as we would physical con-
stituents. Lastly, to link the physical and social views, consider
which services constituents in the physical view provide to
constituents in the social view, and vice versa, and add these
to the diagram.

In this paper, the Python NetworkX package was used
to capture the networks, facilitating graphical presentation
and mathematical computation. This is particularly beneficial
for large networks where software automation facilitates the
application of the proposed approach. However, for improved
visualization, larger systems can also be captured using Sys-
temigrams, which may span multiple pages.
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Water Pumping
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Traffic Lights
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Fig. 1. Clustering coefficient example (actual service provision is shown
using black edges, while potential service provision is shown using grey edges)

IV. CLUSTERING AS A METRIC FOR EMERGENCY
RESPONSE AND PREPAREDNESS

The socio-physical approach presents the system as a set
of constituents (i.e., nodes) and interrelationships (i.e., edges).
Therefore, when identifying critical system constituents, var-
ious measures from network theory can be applied. The
clustering coefficient, for instance, can be used as a measure
of systemic risk [34], [49], and, in this paper, the clustering
coefficient is adopted to identify critical nodes [50] using a
combined socio-physical perspective, which provides a more
complete and accurate picture of the system. This is crucial, as
emergencies often impact only a few constituents of the system
directly, but, indirectly, because of the interrelationships that
exist among constituents, have a much broader systemic effect.

As an example of the use of clustering in emergency
response, consider the situation shown in Fig. 1. The electrical
substation supplies power to the hospital and traffic lights,
as well as to the water pumping station (black, non-bolded,
directed edges). The traffic lights and hospital do not provide
services to each other or to the water pumping station, but
could possibly in an alternate situation (grey, directed edges),
while the water pumping station, supported by the electrical
substation, does provide water to the hospital (bolded, directed
edge).

Whenever a particular node (e.g., water pumping station)
is supported in its task to deliver a service to another node
(e.g., hospital) by a third node which provides a service to
both nodes (e.g., electrical substation), the “triple” formed
by considering these three nodes becomes connected in a
special relationship termed a “triangle.” In graph theoretic
notation, if the directed edges (a,b), (a,c), and (b,c) exist
among three nodes, a, b, and c, then these nodes are said to
form a “triangle.” By considering the support provided from
the perspective of node a, it is seen in Fig. 1 that each of
its neighbours could potentially provide facilitated support
to the other two remaining neighbours; thus, there are six

“triples” (five grey edges plus the bolded edge). However, in
this example, only one of these edges actually exists (bolded
edge), so there is one “triangle”. It is the ratio of triangles to
triples that is being measured by the clustering coefficient.

By being aware of this dependency triangle, response efforts
could focus first on the electrical substation, rather than the
water pumping station, under limited resources, as electricity is
a necessary prerequisite to pump water to the hospital. In this
way, the clustering coefficient can be used to identify critical
interdependencies and help prioritize response efforts, thereby
reducing risk.

More importantly, this figure of merit allows one to ob-
jectively compare different approaches and determine which
is better for emergency-response: social and physical (in
isolation) or a combined socio-physical approach. It will be
shown quantitatively that the combined perspective provides
increased information to emergency managers. In addition,
it will be shown that this metric can also be used to say
something (qualitative) about the criticality of nodes.

A. Clustering Equations

Clustering can be measured in a variety of ways: it can
be measured using a directed or undirected network, which in
turn impacts which equations are used; and it can be measured
locally, from the perspective of each system constituent, or
globally, from the perspective of the entire system [51]. In
this paper, because the networks we consider are directed
based on service provision, as shown in Fig. 1, we focus
on the directed network equations using both local (i.e., local
clustering coefficient) and global (i.e., average local clustering
coefficient and global clustering coefficient) measures. These
measures have been selected based on their widespread use in
the literature and their ability to compare different networks.
Specifically, the local measure will be used to help determine
node criticality, while the global measures will be used to
compare views.

1) Local Clustering Coefficient: The local clustering co-
efficient is a measure from the perspective of each node
regarding the number of triangles it forms versus the total
number of possible triangles (i.e., triples) it could form in its
local neighbourhood, which includes all nodes to which the
current node connects. In other words, it is the ratio of how
many of the nodes in the local neighbourhood receive a service
from the current node and provide a service to another node
in the neighbourhood. The equation for the local clustering
coefficient is as follows (adapted from [52]):

number of triangles connected to node;
C; = (1)

number of triples centered on node;

where C; is the local clustering coefficient of node;; the
numerator is the number of triangles connected to node; ,
i.e., the number of neighbours node; has in common with its
connected neighbours; and the denominator is the total number
of triples centered on node; , i.e., the total number of possible
common neighbours defined by the following equation:

triples; = neighbours; x (neighbours; — 1). 2)
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With each of its neighbours (i.e., neighbours;), node; could
share (or have in common) a maximum of all other of its
neighbours (i.e., (neighbours; — 1)); thus, the number of
triples, which represents the maximum number of possible
triangles, is the product of these two numbers.

2) Average Local Clustering Coefficient: The average local
clustering coefficient is a measure from the perspective of the
entire network. It tells the average ratio of support to service-
providing nodes compared to support to non-service providing
nodes, considering a set of localized neighbourhoods. It takes
the local clustering coefficients for each network node and
averages them to achieve a global measure, according to the
following equation [52]:

1
CZgXi:Ci (3)

where C' is the average local clustering coefficient of the
network, n is the total number of nodes, and C; is the local
clustering coefficient of node;.

3) Global Clustering Coefficient: The global clustering
coefficient considers the entire network, as well, but rather than
averaging local clustering coefficients, it computes a single
ratio for the entire network. In doing so, it characterizes the
network according to a global ratio of interdependence, as
the entire network and not patches of local neighbourhoods
is taken into account. The equation for the global clustering
coefficient is as follows (adapted from [52]):

C number of triangles in the network

“4)

number of triples of nodes

where C is the global clustering coefficient of the network,
the numerator is the total number of connected triangles in the
network, and the denominator is the total number of triples in
the network.

These three measures will be used to analyze the university
case study presented in the next section and, in particular, the
merit of the socio-physical view in relation to the social and
physical views in isolation.

V. UNIVERSITY CASE STUDY

In early December 2006, an incident in the steam plant
at a university in south-western Ontario, Canada, resulted
in the closure of the university for half-a-day. The incident
stemmed from a combination of factors, including routine
boiler maintenance and an unexpected drop in water pressure
supplied to the steam plant by the city, which caused water
to collect in the steam pipes and resulted in a water-hammer
explosion when the boiler was brought back online.

Although steam was restored by early evening, this seem-
ingly innocuous incident revealed several critical interdepen-
dencies within the university system. For example, the lack of
steam production affected student residences on campus and
nearly resulted in the cancellation of student examinations the
following day. More crucially, however, it also affected the
university hospital, where steam is used to sterilize equipment
and bedding. In fact, as a result of the incident, hospital
evacuation procedures were begun, wherein many surgeries

needed to be rescheduled and non-essential hospital services
temporarily suspended. These procedures also involved the
nearby network of city hospitals, which had to prepare for
the potential receiving of evacuated patients.

On the day of the incident, the Emergency Operations
Center (EOC) did not have a clear understanding of what
caused the explosion, but they were expected to respond to
the immediate needs of the university community: protecting
critical research labs and restoring heat to residences and
classrooms. Of importance, the EOC did not have a social
understanding of what role steam played in the university
hospital, and were only informed about the issue once it began
affecting hospital staff. Such unawareness nearly resulted in a
major cascading systemic effect that would have impacted the
entire city, including bus services—as buses would have been
used to assist in the evacuation.

In response to such partial views, we propose a combined
socio-physical view for emergency response, and compare this
approach using the above case against the traditional social and
physical views in isolation (i.e., without any interconnections
between them). Using clustering as a metric, different views
of the university system will be presented, along with analysis,
to objectively determine which view provides emergency man-
agers with the better understanding of the system-of-interest,
all in an effort to reduce systemic risk. It should be noted that
this type of oversight, stemming from the use of partial views,
is easy to correct prior to an incident, but not during one, when
other pressures and responsibilities take precedence and must
be managed.

A. Three Different Views of the University System

Fig. 2. Social view of the university system (directed edges represent services
provided from one node to another)

1) University’s Social View: The social view of the uni-
versity is shown in Fig. 2. It captures the social network
constituents (i.e., nodes) and interrelationships (i.e., edges)
in the university system. Fifteen social nodes have been
identified, including students, teachers, researchers, operations
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On-Ca
Housing

Fig. 3.  Physical view of the university system (directed edges represent
services provided from one node to another)

staff (e.g., maintenance), and management staff; university
hospital staff and patients have also been included in the
network. Interrelationships between these nodes, such as pro-
vide instruction, provide administrative assistance, and provide
care, have also been captured, but, to facilitate readability, the
edge labels do not appear in the figure. These represent the
services, from the social perspective, that one node provides
to other nodes in the network, and this is depicted in the figure
using directed edges: the arrow points to the node receiving a
service from another node.

2) University’s Physical View: The 13 university physical
nodes and their interrelationships are shown in Fig. 3. These
include buildings (e.g., on-campus housing; university hospi-
tal; the teaching system, i.e., classrooms; and the research
system, i.e., research labs) and critical infrastructure (e.g.,
steam; electricity; communication and IT, i.e., telecommu-
nications; and transportation, i.e., roads). Interrelationships
between these nodes, such as provides electricity, provides
steam, and connects (for roads), have also been captured,
but the labels have been omitted from the figure to improve
readability.

3) University’s Socio-Physical View: Lastly, the combined
socio-physical view is shown in Fig. 4 and includes the
interrelationships across views; that is, those interrelationships
that exist from a physical node to a social node (e.g., a
building provides facilities to students) and from a social
node to a physical node (e.g., operations workers monitor
critical infrastructure). To assist in understanding the figure,
two different coloured edges have been used. The lighter
edges represent the case when a node of one type (either
social or physical) provides a service to the majority of
the nodes of the opposite type. This is seen, for example,
with the Transportation node: directed edges starting from
this node are lighter than edges starting from some other
nodes, indicating that this physical node provides a service to
most of the social nodes. By contrast, darker edges represent
the case when a service is provided to only a minority of
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Fig. 4. Socio-Physical view of the university system (only edges between
the social and physical views are shown, and directed edges represent services
provided from one node to another)

H

nodes of the opposite type. This is seen with the Hospital
node, which provides facilities only to Hospital Staff, Patients,
and Visitors. The socio-physical view further incorporates the
interrelationships from both the social and physical views, as
appear in Fig. 2 and Fig. 3, respectively, though for readability
these interrelationships have been omitted from the figure,
along with edge labels.

B. View-Specific Clustering Coefficients

1) University Social View’s Clustering Coefficient: As de-
scribed in the previous section, the clustering coefficient can
be used to help identify critical system nodes. The local
clustering coefficient values for each social node are shown
in Table I and have been computed based on the network
depicted in Fig. 2. Note that Table 1 contains values for the
social or physical and socio-physical views to help simplify
comparisons. Importantly, the “’social or physical view” can be
thought to contain all nodes in the system, only without any
interrelationships across views. Thus, what is being compared
is the same system, only with the traditional segmented view
versus systemic view.

The values for the social view are found under the “Social or
Physical” column in Table I. For this view, eight social nodes
participate in a clustering relationship, while the remaining
seven nodes have a clustering coefficient of 0.0, which means
that for each of these nodes none of its neighbours is connected
to any other of its neighbours. The table also lists the number
of triangles and triples (i.e., the total number of possible
triangles) for each node.

The number of triangles indicates the density of the cluster-
ing. Two nodes may share the same local clustering coefficient
value, but one node may participate in significantly more
clustering relationships than the other node (i.e., its clustering
is more dense). For example, node S1 has a local clustering
coefficient of 0.5, while node S6 has a coefficient of ap-
proximately 0.32. Considering only the clustering coefficients
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would result in node S1 being assessed as the more clustered
node. However, investigating the number of triangles (1 for
S1 and 58 for S6) suggests that node S6 is actually the more
clustered node. This type of a node supports more nodes in
being fully operational (e.g., the electrical substation helping
the water pumping station to operate) and can, therefore,
be considered a more critical node. Subsequently, clustering
density, expressed as the number of triangles, needs to be con-
sidered along with the clustering coefficient, which indicates
the existence of at least one triangle. Both data are recorded
for each node in Table I and depicted visually in Fig. 5 and
Fig. 6.

For the social view, the most critical nodes are Adminis-
trative Staff (S4), Food Staff (S6), Management Staff (S7),
Campus Police Staff (S11), and Technology Staff (S13). These
nodes do not represent the main functions of the university,
which include teaching, learning, and research. Instead, they
correspond to those supporting constituents that are needed by
the university to maintain operational continuity.
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Fig. 5. Local clustering coefficients for all nodes considered in the social or
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Fig. 6. Local triangles for all nodes considered in the social or physical and
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In Fig. 5, the local clustering coefficients for each node
in the university system are shown. The darker bars represent
the social or physical view, while the lighter bars represent the
combined socio-physical view, including the interrelationships
across views. This information is taken from Table I and
appears as bar charts. As seen, in the majority of cases, the
local clustering coefficient of a node increases when the more
holistic socio-physical view is considered, and any non-zero
value indicates the presence of at least one triangle.

By comparison, the number of triangles for each node in the
university system is shown in Fig. 6. The information is ex-
tracted from Table I and includes node data from the social-or-
physical column (darker bars) and the socio-physical column

(lighter bars). In all cases, the number of triangles in the socio-
physical view is at least as large as the number of triangles
when considering the social and physical views independently.
As these represent non-averaged values, triangles are better in
identifying the most critical supporting nodes in the system,
rather than using the clustering coefficient alone.

2) University Physical View’s Clustering Coefficient: The
critical nodes in the system from the physical point-of-view
are shown in Table I under the “Social or Physical” column.
These nodes include Transportation (P6), Water & Sewage
(P7), Steam (P12), and Electricity (P13). The nodes signify
traditional critical infrastructure. However, Communication &
IT (P10) is notably missing from this list, since in the physical
view for this case study, the nodes to which it provides a
service do not provide any service to one another, as seen in
Fig. 3 (i.e., there are no triangles).

3) University Socio-Physical View’s Clustering Coefficient:
The local clustering coefficients for the socio-physical view
are found under the “Socio-Physical” column in Table 1. These
calculations take into account the interrelationships within the
social and physical views (i.e., the “Social or Physical” values
in Table I) along with the interconnections that exist across
these views. The most critical nodes in this view are as follows
and relate to the criticality across both the social and physical
views combined: Food Staff (S6), Campus Police Staff (S11),
Technology Staff (S13), Transportation (P6), Water & Sewage
(P7), Communication & IT (P10), Steam (P12), and Electricity
(P13).

4) University Global Clustering Coefficients: Lastly, two
global clustering cofficients have also been considered in this
case study to demonstrate the additional network-level infor-
mation available from the socio-physical view. Table II shows
the average local clustering coefficient from the social or
physical and socio-physical perspectives, and clearly suggests
the increased presence of clustering in the latter. However, the
clustering coefficient alone, as argued above, does not reveal
the full story. This is seen in the global clustering coefficient
(also shown in Table IT), where the values for both perspectives
are similar. Investigating further, it is seen that the number of
triangles in the socio-physical perspective is more than four-
times that of the social or physical perspective.

C. Discussion

In this section, the clustering coefficient of each node was
considered independently of a specific emergency. If a specific
emergency presented itself and affected a particular node,
for example, the steam plant (P12), the clustering informa-
tion could help provide a more complete representation of
the nodes in the system that would be affected. Examining
Table I, using P12 as the affected node, from the social or
physical perspective, we see that 7 service-provision edges
would be impacted (as the number of triangles is 7). This
same perspective, which was used on the day of the incident,
does not include the hospital staff or patients. However, from
the socio-physical perspective, we see a fuller picture: 156
service-provision edges would be affected, including those
to the students, patients, teaching staff, and hospital staff
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TABLE 1
LOCAL CLUSTERING ANALYSIS, INCLUDING TRIANGLES AND LOCAL CLUSTERING COEFFICIENTS, FOR THE SOCIAL OR PHYSICAL AND SOCIO-PHYSICAL
VIEWS (UNDERLINED TRIANGLE VALUES IDENTIFY THE MOST CRITICAL NODES IN EACH VIEW)

View | Label (ID) Social or Physical Socio-Physical
Number of Number of Local Clustering | Number of Number of Local Clustering
Triangles Triples Coefficient Triangles Triples Coefficient
Teaching Staff (S1) 1 2 0.5 1 2 0.5
Operations Staff (S2) | 0 0 0.0 44 132 0.333333
Research Staff (S3) 2 2 1.0 2 2 1.0
Admin. Staff (S4) 53 132 0.401515 53 132 0.401515
Hospital Staff (S5) 0 0 0.0 1 2 0.5
Food Staff (S6) 58 182 0.318681 74 210 0.352381
2 Mgmt. Staff (S7) 47 110 0.427273 47 110 0.427273
2 Misc. Staff (S8) 2 6 0.333333 2 6 0.333333
z Patients (S9) 0 0 0.0 0 0 0.0
= Fire Safety & Emer- | 0 0 0.0 69 182 0.379121
S gency Mgmt. Staff
@ (S10)
Campus Police Staff | 56 182 0.307692 235 702 0.334758
(S11)
Visitors (S12) 0 0.0 0 0 0.0
Tech. Staff (S13) 57 182 0.313187 74 210 0.352381
On-Campus Housing | 0 0 0.0 0 0 0.0
Staff (S14)
Students (S15) 0 0 0.0 0 0 0.0
Teaching System (P1) | O 0 0.0 1 6 0.166667
Campus Police (P2) 0 0 0.0 3 6 0.5
Operations (P3) 0 0 0.0 7 20 0.35
On-Campus Housing | 0 0 0.0 1 6 0.166667
s | ey
2 Food (P5) 0 0 0.0 72 182 0.395604
- Transportation (P6) 36 132 0.272727 243 702 0.346154
§ Water & Sewage (P7) | 7 56 0.125 156 506 0.308300
E; Research System (P8) | 0 0 0.0 0 6 0.0
- Hospital (P9) 0 0 0.0 1 6 0.166667
Comm. & IT (P10) 0 42 0.0 131 462 0.283550
Oil & Gas Inventory | 1 2 0.5 1 2 0.5
(P11)
Steam (P12) 7 56 0.125 156 506 0.308300
Electricity (P13) 35 132 0.265152 242 702 0.344729

nodes that were affected on the day of the incident. Thus,
the proposed explicit, combined socio-physical approach does,
in fact, provide quantitatively and qualitatively more in-depth
information about systemic interdependencies as shown in
Tables 1 and II, which in turn can be used to help reduce
systemic risk.

Although the system in this case study may initially appear
to be small, the university community under consideration is
in fact quite large—in excess of 15,000 individuals, including
students, faculty, and staff, making it larger than several small
communities in North America. It also has its own separate
hospital, power and steam plants, and food and police services,
making it sufficiently complex. The proposed approach to
describe and analyze the network is scalable, particularly with
the aid of software tools, and can be used to investigate large
cities and even networks of cities.

It must be emphasized, however, that the socio-physical
approach advocated does not claim to present a single metric
capable of identifying the most critical node in every sit-
vation. Instead, it focuses on the benefits of the combined
socio-physical view and presents a heuristic for comparison
purposes. Nevertheless, this heuristic can be used to allocate
resources if no labels are associated with the nodes (i.e., if
every node is considered to be of equal importance): meaning

that if the only information an emergency manager were
presented with was a list of node IDs and associated local
clustering coefficients (and triangles), the emergency manager
could make an allocation decision better than random chance
simply by focusing on the hubs. The logic being that hubs, by
virtue of their increased interconnectedness, have a farther-
reaching impact than do relatively isolated nodes.

Importantly, this simplistic prioritization mechanism can
be improved by associating weights with different nodes
based on the context of the response (e.g., if lives are at
risk, nodes related to the process of saving lives could be
given higher weights than nodes associated with day-to-day
business operations). This weighting can also be based on
the resource requirements associated with particular response
actions needed to restore a node’s operational capability [53].
Clustering can further be used as a benchmark when compar-
ing alternative measures of what constitutes the most critical
node, and can also be combined with other metrics, such as
node centrality, to participate in more sophisticated analysis.
Finally, these static measures can be combined with simulation
to perform dynamic analysis [19]. For example, they can be
used as initial conditions in the simulation and depending on
how external factors (e.g., hazards) affect the system, highlight
the criticality of different nodes based on weighting. This
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TABLE I
GLOBAL CLUSTERING ANALYSIS FOR THE SOCIAL OR PHYSICAL AND SOCIO-PHYSICAL VIEWS

Average Local Clus- Global Clustering Number of Number of

tering Coefficient Coefficient Triangles Triples
Social or Physical 0.174627158556 0.297208538588 362 1218
Socio-Physical 0.312526190166 0.336526447314 1616 4802

would facilitate stress-testing the system based on different
hazards, as well as in applying complementary risk analysis
techniques, such as FMEA.

VI. DETERMINING A SINGLE NODE’S IMPACT ON THE
NETWORK

In the previous section, the benefit of considering a com-
prehensive view of the system was shown quantitatively, using
the metrics described in Section IV. However, these established
approaches for measuring clustering and comparing the results
from different networks appear to have some limitations when
applied to emergency response, even though they were useful
in showing the quantitative difference between the isolated
physical or social and the combined socio-physical views.
Specifically, the local clustering coefficient, while beneficial
for measuring the clustering within a local neighbourhood,
cannot identify indirect dependencies affecting nodes out-
side the immediate neighbourhood under consideration, which
raises concern when qualitatively defining “critical” nodes.
Moreover, the global clustering metrics, while beneficial for
comparing general trends across different networks, cannot
quantify the impact of a single node on the network. These
existing limitations necessitate an alternative method for such
a quantification, which can assist in identifying node criticality,
thereby improving system awareness and, in turn, facilitating
proactive and reactive risk-reduction strategies.

Different extensions to the local clustering coefficient have
been proposed, including [54] and [55]. The latter considers
nodes beyond the immediate neighbourhood, allowing for the
specification of the reach (or depth) of the neighbourhood.
Where typically a neighbourhood would only include the im-
mediate neighbours (depth = 1), different depth levels can be
specified, including neighbours of the immediate neighbours
(depth = 2), neighbours of the neighbours of the immediate
neighbours (depth = 3), and so on. This permits an analysis
of a larger subset of the network.

In this section, because we are interested in the impact of
a single node on the entire network, the neighbourhood of
interest is that which includes all nodes that can be reached
from the origin node (i.e., that node whose impact is being
assessed). This set of nodes will be called the reachability set.
Furthermore, because cycles containing the origin node are
also of interest, the origin node will be considered when com-
puting the number of triangles and triples. This is in contrast
to existing clustering coefficient methods, which consider only
open neighbourhoods (i.e., ones not including the origin node),
rather than a closed ones [37], [54], [55]. The combination of
the reachability set with the origin node will be called the
closed reachable neighbourhood.

This neighbourhood is then used in the determination of the
clustering impact of the origin node. It is the ratio of triangles
in this neighbourhood to the total number of possible triangles
(i.e., triples) within the network that determines the connection
density (i.e., clustering) of the origin node across the network.
The equation for the reachable clustering coefficient is as
follows, and combines features from both the local and global
clustering coefficients to determine the impact of a single node
on the network:

O triangles in closed reachable neighbourhood;

triples in network
(5
where the numerator is defined in Algorithm 1, below, and
the denominator, the total number of triples in the network, is
defined by the following equation:

triples in network =n x (n —1). (6)

Here n refers to the total number of nodes in the network,
and this equation says that every node can potentially connect
to every other node in the directed network. As is the case
with the other clustering coefficients referenced, there are no
self-loops permitted (i.e., a node cannot connect to itself);
conceptually, in the context of emergency response, this would
imply that a constituent helps itself, which is redundant.

Algorithm 1 An algorithm for determining a single node’s
clustering impact on the network

function REACHABLECLUSTERINGCOEFFICIENT(g, n, S, 0)
triangles < 0
n.visited < true
nSet « s U g.neighbours(n)
for node in g.neighbours(n) do
if node.visited is false then
val < Reachable...Coef ficient(g,node, nSet, o)
triangles < triangles + val
end if
end for
if n #£ o then
triangles « triangles + size(s N n.neighbours)
return triangles
else
rC < triangles/g.nodeCount x (g.nodeCount — 1)
return rC
end if
end function

Algorithm 1 shows the steps used to determine a single
node’s clustering impact on the network, i.e., the reachable
clustering coefficient. Four parameters are passed to the re-
cursive function: the graph, g; the current node, n; the set
of reachable neighbours discovered so far, s; and the origin
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node, o. In the initial call, the current node and origin node
are identical and the neighbour set includes only the origin
node. As the function is executed, the number of triangles,
triangles, is initialized to zero; the current node’s visited
attribute is set to true; and a new neighbour set, nSet, which
includes s and the immediate neighbours of n is created.
(Eventually, this set will include all nodes in the closed
reachable neighbourhood.) For each neighbour, node, of the
current node, n, a logical condition is evaluated to determine
whether or not this node has previously been visited. If it has
not yet been visited, a recursive call to the same function is
made in which the graph, unvisited node, increased neighbour
set, and origin node are passed. This process is used to
discover every node reachable from the origin node. For every
node discovered (i.e., for every node that is not the origin
node), the number of triangles contributed by this node is
equal to the size of the intersection of this node’s neighbours
with the set of all neighbours found within the reachable
neighbourhood so far (i.e., s). These values are tallied as the
recursive calls return until all triangles have been accounted
for, i.e., until the final recursive call is returned to the node
which originally began the recursive process. In this case, n
will equal o and the else condition is executed. The reachable
clustering coefficient is then computed based on Eq. 5 and
returned to the original caller of the function.

Turning now to the application of this approach, when
applied to the case study, the results reveal that most nodes
have nearly identical reachable clustering coefficients as the
network is highly interconnected. Therefore, in place of dis-
playing the results in a table, the results of two exemplar
nodes—the Hospital and the Steam constituents—will be
analyzed, while a possible extension will be discussed further
in the section which could enable more discriminating results.

The Hospital constituent is an example of a node with a
small number of outgoing edges. Its immediate neighbours are
Hospital Staff, Patients, and Visitors. Because the Hospital
constituent is a physical node and its neighbours are social
nodes, the reachable clustering coefficient is 0.0 when the so-
cial or physical view is considered (i.e., there are no triangles).
When the socio-physical view is considered, on the other hand,
two triangles are found in its closed reachable neighbourhood,
yielding a reachable clustering coefficient of 0.002646 (i.e.,
2 triangles / 28 x 27 triples). This is in contrast to the one
triangle found using the local clustering coefficient (see Table
I), which resulted in a value of 0.166667, as only the six triples
in the immediate neighbourhood were considered.

By comparison, the Steam constituent is an example of a
node with a large number of outgoing edges. It includes eight
immediate neighbours in the social or physical view and 23
in the socio-physical view. Considering the segmented view
first, the algorithm identifies eight triangles, resulting in a
reachable clustering coefficient of 0.010582 over the network,
while, for the combined view, it identifies 247 triangles, which
equates to a reachable clustering coefficient of 0.326720.
This represents a significant increase between views in the
amount of network clustering. To contrast, the local clustering
coefficient in Table I yields a value of 0.125 (i.e., 7/56) and
0.308300 (i.e., 156/506), respectively, for the different views.

As can be seen, using the reachable clustering coefficient
facilitates comparisons across and within networks by com-
bining local and global aspects. For example, the coefficient
of Steam for the social or physical view is nearly four times
as large as that of Hospital for the combined view, and
Steam’s clustering coefficient for the combined view is close to
thirty times as large as its coefficient for the segmented view.
Such comparisons, using only the local clustering coefficient
without considering the number of triangles, are more difficult.

In addition to the clustering results, seven cycles were
identified in the Steam constituent’s closed reachable neigh-
bourhood (this logic was omitted in Algorithm 1 to improve
readability). The constituents connecting back to Steam in-
clude Water & Sewage, Electricity, Oil & Gas, Transportation,
and Operations Staff. However, with the exception of the first
two constituents, the remainder only become critical to the
production of steam under specific situations. For example, Oil
& Gas becomes critical when Electricity fails and Operations
Staff becomes critical if there is a failure in the Steam
constituent.

These concrete examples offer opportunity to refine the
approach in its application to risk reduction. Specifically,
in addition to the present formulation for determining the
reachable clustering coefficient of a node, various extensions
can be applied, including adding weights to the nodes and
to the triangle edges to further discriminate results. Nodes
can be weighted based on the importance of the node to
the functioning of the entire system—for example, Patients
could receive a lower weighting than Steam, as it provides a
relatively less operationally vital service—, while edges can
be weighted based on the distance of the nodes they connect
from the origin node—the idea being that the origin node
has reduced contribution to the operation of another node the
further away that node is from the origin. Such extensions
could also include weighting rules based on situational context.
For example, the weight of the Sfeam node might increase
when temperatures fall below a certain threshold or the weight
of the Comm. & IT Staff node could be increased if the Comm.
& IT node experiences a reduction in service. This is because
the former is responsible for maintaining the latter and is
needed to restore normal service levels; however, when there
are no service issues, Comm. & IT Staff is less critical.

These extensions are particularly relevant when applying
this metric to a broader set of cases, and these various im-
provements the authors leave for future work. However, in the
next section, a proof-of-concept simulation is discussed, which
combines those constituents of the socio-physical view from
the university case study which proved most relevant during
the incident. It is envisioned that such a simulation could be
extended with network analysis capabilities to facilitate the
application of the proposed metric.

VII. SOCIO-PHYSICAL MODELLING & SIMULATION

In this section, we will explore how simulation can be used
to reactively and proactively reduce systemic risk. We will
consider specifically the university case study. Rather than
using network metrics, the applicability of the socio-physical
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approach to modelling and simulation is being investigated.
For the implementation of the proof-of-concept simulation, a
combination of discrete-event and agent-based models were
used.

Fig. 7 shows a screenshot of the running simulation. Con-
sidering the university case study, those constituents which
proved most relevant were, for the physical nodes, the steam
plant, water system, university hospital, (critical) research labs,
on-campus housing (i.e., residences), and classrooms, and, for
the social nodes, the patients (and specifically the impact of
steam on patient care); no other social node dominated the
incident. These key constituents are shown in the simulation
screenshot, along with a dashboard showing hospital steam
demand and supply over time, as well as steam distribution
across the various physical constituents. The data used in the
simulation can be specified by the user in order to facilitate the
analysis of different scenarios; however, for the purposes of
the proof-of-concept simulation, the data used in Fig. 7 were
selected to assist with visualization and are not based on the
case study.

In the screenshot, only two buildings are receiving steam
(grey input lines)—the university hospital and research labs—
while every building is being supplied with water (blue input
lines). Both steam and water distribution throughout campus
can be modified within the simulation in real-time to simulate
the consequences of specific response decisions on the system.
Furthermore, the water being supplied by the city can be
modified to account for different external factors impacting

Screenshot of the combined socio-physical simulation, in which key physical and social constituents are included in a single model

the system-of-interest (i.e., the university). Lastly, the various
patients in the hospital awaiting/receiving treating are shown.
These patients are impacted by the lack of steam to the hospital
and may need to be evacuated to city hospitals (external to
the system-of-interest) as discussed in the case study. Patients
appear in two groups: yellow patients, who can be transported
via bus; and red patients, who will need to be transported via
ambulance.

The simulation, moreover, can be used both reactively, to
anticipate the consequence of specific response decisions, and
proactively, to explore the benefit of modifying the system
prior to an emergency. In the simulation run shown in Fig. 7,
for example, an additional piece of infrastructure was added to
the system: an on-campus water storage facility. This is used
to help mitigate the effect a reduction in water supply from
the city may have on steam production. Its benefit to the risk
resilience of the system can then be tested, by exploring for
example the maximum level of water-supply variability from
the city that can be compensated for.

At a glance, using such a simulation, the added benefit
of combining both the social and physical views, along with
their interconnections, for emergency response is shown. For
instance, without modelling physical constraints like water
transmission, water’s impact on the social level (i.e., patients)
is not explicitly captured. Among other things, this makes
it more challenging to explore the effect of certain external
factors on patient care, such as the water supplied from
the city, as the model is limited in its representation of the
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real-world. Similarly, without explicitly considering the social
level, its impact on the physical level remains implicit and
outside the exploration of the simulation.

A subset of the socio-physical view was considered in this
proof-of-concept simulation and the impact of constituents
across the system was modelled. Having a combined socio-
physical simulation allows risk-mitigation strategies to be
explored prior to an incident (via what-if scenarios) and the
consequences of response actions to be considered follow-
ing an incident (using real-time data via the dashboard). In
both cases, systemic risk can be reduced through increased
awareness, resulting in improved emergency response and
preparedness: the more information an emergency manager
has to make a decision and to know about the potential
consequences, the more assurance that the desired effect will
result. As part of future work and to assist researchers and
practitioners in applying the approach proposed in this paper,
we are continuing to improve the simulation capability with
more constituents and the incorporation of network metrics.

VIII. CONCLUSION & FUTURE RESEARCH

This paper proposes using a socio-physical view of a
system, for emergency response and preparedness, to increase
situational awareness and thereby reduce systemic risk. This
explicit, combined and integrated socio-physical approach al-
lows the situation to be viewed holistically and reveals a more
complete representation of the network under consideration.
The application of the proposed approach was illustrated on
a case study, where clustering analysis was used to extract
network data for the social or physical and socio-physical
views of the university system. An examination of the case
showed that clustering coefficients vary depending on the view
taken. It also highlighted the importance of clustering density,
based on triangles, in identifying critical nodes. Moreover, it
revealed the limitation of existing clustering approaches in
describing the impact of a single node on the entire system and
proposed a new metric, the reachable clustering coefficient, to
address this limitation.

The clustering analysis demonstrated objectively that the in-
formation garnered from the proposed socio-physical approach
is broader and more relevant than using the social or physical
view. A proof-of-concept simulation was also presented to
further underscore the benefit of the approach. In conclusion,
having this expanded perspective provides much needed, criti-
cal information for raising the level of emergency preparedness
(for stakeholders) and for responding more effectively and
efficiently to a hazard (for the emergency manager).

The introduced socio-physical approach has diverse appli-
cation to many different areas of emergency response and
preparedness, including:

o Education and training,

e Modelling and simulation of what-if scenarios,

o Stress-testing the system prior to an emergency,

« Building the system’s capacity to cope with disruptions

more effectively and efficiently,

o Improving communication between stakeholders, and

o Creating a more collaborative and coordinated environ-

ment for response.

Triangulation would be beneficial to help further support
the proposed approach, and the authors are working toward
applying the approach to other case studies as part of future
research, including larger disasters to show its scalability.
Modelling and simulation of what-if scenarios based on these
case studies will also be examined and can further serve as
a foundation for designing and developing safer and more
resilient systems. Finally, the current work considers only
static snapshots of the network, but changes to the system (e.g.,
from hazards or accidents) will impact the network topology.
As such, we also plan to capture network measurements
resulting from the real-time dynamics of the network “in time”
through simulation.
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