
 
 

 

  

Abstract—Rooted in a deep understanding of their major 
properties, a control paradigm for complex systems is proposed 
based on latest advances in modeling the dynamics of complex 
networks. 
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I. BACKGROUND 
HE  foundations of Cybernetics [1] and General Systems 
Theory [2] developed from two schools of thought: 

A. Control and Feedback 
The cybernetics group [3] was firmly established in 

America by 1946. The term Cybernetics was given by [1] as 
“The science of control and communication in the animal and 
the machine”. Cybernetics offers methods for the study and 
control of systems that are intrinsically complex through 
mechanism, variety, regulation and control [4]. Main themes 
are those of circular causality and feedback control [5].  

B. Relationship between parts 
The concepts of General Systems Theory evolved from 

Bertalanffy’s work on theoretical biology in Europe [6]. The 
Society for General Systems Research was established in 
1956 after his move to America in the 1950’s [7]. 

The main idea of General Systems Theory [8] is that of 
interactions between parts. Reductionism [9] refers to the 
individual analysis of the parts of a system, followed by a 
theoretical formulation of how the parts of the system 
interact, and a synthesis of the theoretical interactions in order 
to derive the higher-level properties of the system. The 
reductionist approach avoids the study of the real 
relationships between parts. In contrast, the systems approach 
focuses on the study of the interactions and relationships 
between parts. 

Following the development of the concepts of Cybernetics 
and General Systems Theory, System Dynamics [10] 
introduced a way of describing how systems grow over time, 
and, more specifically, how interactions between parts of a 
system develop over time. System Dynamics uses concepts 
drawn from the field of feedback control to organize available 
information into models [10]. 

The combination of Cybernetics, General Systems Theory 
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and System Dynamics culminated in what is known as 
Systems Theory. The purpose of Systems Theory is to create 
models for describing the behavior of a related set of natural, 
physical or social phenomena. 

II. COMPLEX SYSTEMS 
Complex systems refer to a set of systems that share some 

common behavioral and structural properties. These 
properties include: non-linear relationships between parts; 
openness; feedback loops; emergence; pattern formation and 
self-organization. In this section, we describe these properties 
on an example complex systems scenario of a future Internet 
consisting of multiple wireless networks [11] in which 
constellations of wireless devices (or ad-hoc networks) 
cluster to share Internet access. As parts of a complex system 
(Fig. 1), the wireless devices represent users, and the 
bandwidth providers represent service providers, while the 
interactions between the parts are driven by the need to form 
communities of networks to obtain access to bandwidth 
resources. 

For the scenario in Fig. 1 we aim to:   
1)  Control the formation of ad-hoc networks to satisfy the 

requirements of both users and service providers for 
bandwidth as shared resource. 

2)  Maintain network robustness given a large number of 
networked users and service providers. 

In this Section we take a Complex Systems approach to 
address the control objective. A Complex Networks approach 
to address robustness will be presented in Section IIIB.  

A. Non-linear relationships between parts 
In linear systems, effect is directly proportional to cause. 

Non-linearity of a dynamic system is largely rooted in the 
unpredictability of the system [12]. The unpredictability of a 
dynamic system is a result of random noise, the effect of the 
environment on the system, and a lack of knowledge of the 
system’s initial conditions. A system may be viewed as 
deterministic if the current state(s) of the system determine its 
future state(s) in the presence of random noise, environmental 
inputs and unknown initial conditions. The sources of 
unpredictability may not affect the deterministic nature of a 
system however they do affect the ease with which the 
system’s behavior can be predicted. A deterministic dynamic 
system whose behavior is hard to predict is known as a 
chaotic system. Chaotic systems are hard to predict because 
their future state(s) are particularly sensitive to the initial 
conditions of their current state(s). Dynamic systems may 
either be chaotic everywhere, or chaotic around a central 
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attractor [13]. 
The initial conditions of our scenario system are random in 

terms of the locations of existing and new devices joining the 
system, and their proximity to devices that offer bandwidth 
access. 
1)  Coherent device behavior (Fig. 1a): Consider a new user 

may join a system at a location where it is out of range of 
a bandwidth provider and in range of other wireless user 
devices. If none of the existing users have access to a 
service provider, the newly joined and existing users can 
merely organize themselves into a group where they 
share access to each other’s resources. User behavior is 
coherent in that they all have a single objective of sharing 
resources with one another, thereby restricting their 
functional structure to that of sharing resources with each 
other. This restriction in functional structure (in the 
absence of a bandwidth provider) confines the spatial 
structural organization of the resulting community of 
devices, and the devices in the community become the 
central attractor points of the system, in other words, the 
users themselves attract new users.   

2)  Random device behavior (Fig. 1b): If a new user joins a 
system at a location where it is in range of a service 
provider and out of range of other users, the user 
connects directly to the service provider for bandwidth 
access. If we observe a number of these users, we see that 
their behavior is not coherent as would be the case where 
their objective is to share resources with other users. The 
functional objective of a user differs from that of a 
nearest other user in that they connect to different service 
providers. The different functional objectives result in a 
less restricted spatial organization than in (1), and the 
service providers become central attractors of the 
system. The combination of central attractors is 
analogous to chaotic attractors of natural dynamic 
systems. 

3)  Correlated device behavior (Fig. 1c): A new user joins a 
system at a location where it is in range of a service 
provider and in range of other wireless users; hence the 
newly joined user has a twofold functional objective, i.e. 
to connect to neighboring users to share their bandwidth 
resources and to connect to its nearest service provider. 
The functional objective of the user is less restricted than 
in case (1), but not as diverse as in case (2). The resulting 
spatial organization is a combination of those found in 

cases (1) and (2) above. 

B. Emergence 
General Systems Theory emphasizes a study of the 

relationship between parts, and emergence emphasizes the 
interaction between parts to form a coherent whole. The 
coherent whole maintains a sense of identity or persistent 
pattern over time [14]. 

Systems exhibit emergence when there are coherent 
properties at a macro-level that dynamically arise from 
interactions between parts of the system at a micro-level [14]. 
Here, “level” refers to the magnitude of scale at which the 
system is observed, and emerging properties are novel with 
respect to the individual parts of the system. The emergent 
collective behavior of the system is captured by the behavior 
of its parts, but a description of the collective behavior is not 
implicitly contained in the behavior of the parts at a particular 
scale of observation [15]. 

The micro-level interactions between parts of a system 
may be either independent or coherent, resulting in different 
collective behaviors [15]: 
-  Coherent interactions (Fig. 1a) between parts at the 

micro-level lead to a simple small-scale behavior, 
however in this case, complex behavior is observed at a 
large scale. 

-  Independent interactions (Fig. 1b) between parts lead to 
a simple collective behavior at a large scale, however, the 
complex behavior of parts at a small scale is irrelevant to 
the collective behavior of the system at a large scale. 

-  The correlated behavior (Fig. 1c) between parts 
represents a combination of coherent and independent 
behaviors to achieve a specific functional goal. The 
logical and consistent correlation of parts at a large scale 
is a result of correlated behavior between parts at a small 
scale. 

The introduction and removal of wireless devices (users) 
and bandwidth providers (service providers) result in an 
emergent behavior of the system. 
1)  Coherent device behavior (Fig. 1a): For the community 

of users out of range of a bandwidth provider, the 
behavior of users is coherent at the micro-level (device 
level) and leads to a simple small scale behavior of the 
system. As the community of devices grows over time, 
their coherent behaviors merge into a complex collective 
behavior in which all devices are coherent with regard to 
their functional objectives, i.e. to interact to share each 
other’s resources. 

2)  Random device behavior (Fig. 1b): When users are in 
range of service providers, but out of range of other 
users, the behaviors of the individual users are 
independent in that they are “attracted” to different 
service providers. The independent interactions lead to a 
simple collective behavior at a large scale or, in other 
words, from the point of view of the bandwidth service 
providers.  

Fig. 1.  The logical connectivity of devices in a future Internet 



 
 

 

3)  Correlated device behavior (Fig. 1c): The individual 
behaviors of users are neither completely random nor 
completely coherent, but correlated for a specific 
organizational function i.e. users connect to service 
providers and neighboring users in a correlated fashion 
to meet their functional connectivity objectives. 

C. Openness 
Complex natural systems are usually open [16] i.e. they 

exist at a dynamic gradient far from equilibrium. This is in 
contrast to dynamic equilibrium which refers to a state of a 
system at which it experiences no change when isolated from 
its environment. Under equilibrium conditions, a system 
ceases to change over time when observed at a large scale or 
macroscopic level. However, an open system (not isolated 
from its environment) under non-equilibrium conditions may 
experience equilibrium at smaller scales of observation. 

Dissipative Systems [17] are open systems, and the 
processes by which they evolve are governed by the transfer 
of energy from the environment. Whereas isolated systems 
(or closed systems in a broader sense) strive to maintain 
thermal equilibrium, Dissipative Systems have a potential to 
offset an increase in entropy by consuming energy and using 
it to export entropy to their environment.  

In our scenario, the system of users and service providers 
has different degrees of equilibrium at different scales of 
observation. When neither a newly joined or existing users 
have access to a service provider, the system is in equilibrium 
when viewed at the level of the community of users. The 
system is open to growth from this equilibrium in that a 
service provider may be introduced, resulting in 
non-equilibrium of the system at a community level, but a 
potential equilibrium state at a level which includes the newly 
introduced service provider. As with a Dissipative System, 
the community of users strives to maintain equilibrium by 
sharing their resources in the absence of a service provider.  

D. Relationships between parts contain feedback loops 
The combined study of the concepts of control and 

feedback found in Cybernetics and Dissipative Structures in 
far-from-equilibrium thermodynamics have lead to the 
development of the field of Autopoiesis. Autopoiesis [18] 
refers to a characteristic of natural dynamical systems 
whereby a system produces the components which make up 
the system in order to maintain the organized structure that 
gave rise to the components in the first place. Over time, the 
structure of both system and environment change as a result 
of mutual perturbations. 

We consider our scenario system at a time when a 
community of wireless users has had access to at least one 
service provider for some time. The service provider is then 
removed from the system. During the time of access to the 
provider, the community downloaded several resources 
through the bandwidth connection. When the provider is 
removed, the community acts as a “bandwidth store”, which 
may in turn provide resources to existing and newly joining 

users in the community. The system has produced a new 
“bandwidth provider” in the form of a community in the same 
way that a natural system produces the components of the 
same system through Autopoieses. As with Autopoieses, the 
new community structure of wireless devices relies on the 
addition and removal of one or more service providers to 
maintain an organized “dissipative” system of wireless users 
and service providers. 

E. Self-organization 
Self-organization unifies a broad spectrum of theories [19] 

which include thermodynamic (dissipative structures) and 
synergetics approaches [20]. A working definition of 
self-organization is given by [14] as “a dynamical and 
adaptive process where systems acquire and maintain 
structure without external control”. Structure can be spatial, 
temporal or functional. 

Self-organization suggests an ability to adapt towards a 
certain organizational structure or attractor point. Of the 
various attractor points [21], chaotic attractors allow for a 
large variety of behaviors or organizations, whereas point 
attractors allow only single behaviors. The adaptability of a 
system relies on a balance between a single behavior and a 
variety of behaviors to achieve control of the system. 

Expressed as system behavior, the organization of structure 
is the arrangement of parts to achieve a specific function. The 
structural organization restricts the behavior of a system and 
confines it to a smaller region of its spatial, temporal or 
functional structure. The smaller region of its structure is 
representative of a central attractor observed at a particular 
scale. In Fig. 1 the organization results in an increase in order 
of the system behavior to achieve a specific functional or 
structural goal, and is rooted in the completely random or 
semi-organized initial conditions of the system. 

F. Complex Adaptive Systems 
Not all Complex Systems are adaptive. The authors of [22] 

argue that some complex systems, e.g. soap bubble 
formations and frost-heaving patterns in tundra soils, arise 
from self-organization without the benefit of selection or 
design. Adaptive Systems add to the properties described so 
far, those of diversity and natural selection most evident in 
ecosystems, which are perhaps the best examples of Complex 
Adaptive Systems [22]. The dispersed and local nature of an 
autonomous selection process assures continual adaptation, 
the absence of a global controller, and the emergence of 
hierarchical organization [23]. An essential characteristic of a 
Complex Adaptive System [24] is aggregation.  For the 
scenario in Fig. 1, aggregation generates an ecosystem of 
users and service providers, illustrated in Fig. 2. 

G. Aggregation 
Aggregation refers to the way users are grouped into 

communities of users, which in turn are grouped into 
hierarchical community structures. The users and service 
providers are not homogenous in that they differ in the 



 
 

 

amounts of bandwidth they require or are able to share. These 
differences enable a hierarchical assembly of users and 
service providers which may either be imposed on the system 
as a design objective, or emerge through pattern formation 
[25] of local interactions. 

III. COMPLEX NETWORKS 

A. Basic Concepts 
The study of complex networks [26] aims to create models 

of networks in order to predict the behavior of networked 
systems [27]. The parts of a complex system are represented 
by nodes of a complex network, and the interactions between 
parts are the links. 

An early contribution to the field of complex networks was 
the discovery that real networks are neither completely 
ordered  nor completely random [28], exhibiting properties of 
both. These properties can be quantified by a statistical 
measure of the local density of a network, and the global 
separation of the network (or path length between the nodes 
of a network). The “small worlds” model of Watts and 
Strogatz [29] captures the interplay between order and 
randomness of a network, where order means every node is 
connected to its nearest neighbors (high clustering), and 
randomness refers to the fraction of nodes that are randomly 
rewired in order to reduce the path length between nodes. 
Random and small-world models capture the topological 
features of networks. 

Erdos and Renyi [30] were the first to study the distribution 
of the maximum and minimum number of links in a random 
graph, the full degree distribution being derived later by [31]. 
Random networks exhibit a low probability of a node 
exceeding the average number of links of the network, and 
have a normal distribution [28]. 

Albert and Barabasi [32] observed that many networks do 
not in fact have random degree distributions, but display 
distributions that follow a power law. Power Law 
distributions point to the likelihood of a network node 
connecting to more than the average number of links of the 
network, and have resulted in the construction of scale-free 
models. In contrast to the random and small world models, 
scale-free models focus on capturing network dynamics 
rather than topology. The authors of [26] argue that the 
topology of a network is a result of the dynamic processes of  
growth and preferential attachment, thus challenging the 

‘small worlds’ model. 
-  Growth: Whereas the random and small-world models 

assume a fixed number of nodes that are randomly 
rewired, growth implies that networks are open and that 
new nodes are added over time. 

-    Preferential Attachment: Random and small-world 
models assume that links between nodes are placed 
randomly. Newly arriving nodes will tend to connect to 
already well-connected nodes, rather than poorly 
connected nodes. 

The dynamic processes that take place on a network (i.e. 
the interactions between nodes to form links) result in a 
topological structure that is characterized by a specific degree 
distribution. The degree distribution may be altered by 
changing the dynamic processes, or by randomly rewiring the 
nodes to achieve a desired distribution. 

Based on the network models described so far many other 
models have been developed [27]. For example the Internet 
[33], World Wide Web and protein interaction networks have 
power-law distributions, whereas other networks like power 
grids follow an exponential distribution [34]. 

 These statistical properties, i.e. degree distributions of the 
network models are important indicators of a network’s sense 
of community structure, robustness, and sensitivity: 

1) Community Structure 
The community structure of a network is given by an 

intermediate scale of analysis between local (e.g. clustering) 
and global (e.g. path lengths) structure [28]. Community 
structure is determined through hierarchical clustering [35]: a 
method of partitioning a network into similar subsets of 
nodes. The statistical properties (degree distribution) of a 
network are different at different intermediate scales of 
analysis. Fig. 2 shows two different scales of analysis of our 
scenario network: a lower scale of communities of users and a 
higher scale of service providers. 

2) Robustness 
Network robustness deals with the origins and effects of 

node failure. A robust network is defined by [28] as a network 
which can resist failure of its nodes as a result of both random 
and targeted node removal. More specifically, network 
robustness refers to the possibility of a small response of a 
network to large stimuli [36]. As an example, [37] have 
studied the effect of both types of node removal on the 
Internet. They conclude that the Internet has a high tolerance 
for random node removal or failure, but is highly vulnerable 
to targeted removal (attack) of nodes that have a high number 
of links. 

3) Sensitivity 
In contrast to network robustness, network sensitivity 

refers to the possibility of a large network response to small 
stimuli. Using a dynamic attractor network model [36], have 
shown that the scale-free topologies found in nature enable 
more sensitive response to changes compared to random 
networks. The authors argue that the functional 
characteristics of some networks and their topologies are 

Fig. 2.  Hierarchical assembly of users and service providers 



 
 

 

better understood in terms of the system’s need to respond 
with sensitivity to external changes. They identify a 
consistent pattern of behavior of the network (attractor) with 
a functional state of a system, and suggest that the 
architecture of different network topologies affect the 
properties of robustness and response under changes to the 
state(s) of the nodes of the network. They specifically 
contrast the response of random (exponential distribution) 
and scale-free networks’ changes in nodes, considering the 
size and type of attractor points. The attractor points represent 
the regions in the space of network states that evolve to a 
given attractor [36]. The statistical properties of the networks 
(i.e. their degree distributions) characterize how the networks 
respond to in terms of robustness and sensitivity. 

B. A Complex Networks Approach 
The statistical model of a network represents the network 

as a whole, and as a result, the network is described at a 
macroscopic or high level of observation. 

From a complex networks perspective, both the wireless 
devices and bandwidth provider(s) are the nodes of a 
network. The interactions between the nodes of the network 
are reflected in their drive to form communities of networks 
to obtain access to bandwidth resources. This view considers 
the design of the system from the large-scale perspective of 
the bandwidth provider(s) or communities of devices as a 
whole. 

According to the statistical properties of networks (degree 
distributions) the robustness and sensitivity of the network 
depend on the distribution of the number of links connecting 
the nodes. The desired degree distribution that would give the 
right balance between robustness and sensitivity is 
determined by the specific application context. 

Consider now an application context extending the 
scenario in Fig. 1 to a deregulated electricity market (Fig. 3). 
Within this context we regard deregulated electricity markets 
as Complex Systems that have rules imposed on them from 
above (by society) and below (through physical topology). 
Economic theories claim that deregulated markets lead to 

increased economic efficiency by offering higher quality 
services at lower retail prices. However, market participants 
have unique business strategies, risk preference and decision 
models [38]. The Electricity Market Complex Adaptive 
Systems Model (EMCAS) [38] is an agent-based modeling 
tool that analyzes multi-agent markets and allows for the 
testing of regulatory structures before they are applied to 
power grids. 

So far, Fig. 1 described the logical connectivity of a future 
Internet (Fig. 3C): 
-  The logical connectivity represents the abstract 

relationships between nodes, i.e. the relationships for 
controlling the network by determining who connects to 
who to achieve optimum bandwidth usage. Fig. 3A 
shows that the cumulative degree distribution of the 
current Internet follows a power law, indicated by the 
straight-line form on double logarithmic scales [33].  

-  We extend this scenario by introducing the physical 
connectivity of a power grid (Fig. 3D). The physical 
connectivity represents tangible links between electricity 
users and suppliers for transmitting power. Fig. 3B 
shows that the cumulative degree distribution of the 
existing Western United States power grid follows an 
exponential degree distribution [34]. The curve appears 
as a straight line as a result of the log-linear scale used. 

In the extended scenario, the bandwidth users at the logical 
connectivity level mirror the electricity users at the physical 
level, and the bandwidth providers at the logical level mirror 
the electricity suppliers at the physical level. 

IV. CONTROL OF A COMPLEX SYSTEM 
A holarchy is defined as a nested hierarchy of 

self-replicating structures (holons) [39]. Holarchies represent 
patterns of self-organizing structures in which holons at 
several scales of observation behave as autonomous wholes 
to achieve a certain cooperative goal. Our scenario’s goal is to 
control the formation of communities of electricity users and 
suppliers to satisfy electricity market rules while maintaining 
robustness against failure and attack [40] (Fig. 3D). 
1)  The higher level holon(s) mirror the service provider(s) 

of the logical connectivity layer of Fig. 3C, which in turn 
mirror the electricity supplier(s) of  Fig. 3D. 

2)  The lower level holons mirror the users of the logical 
connectivity layer of Fig. 3C, who in turn mirror the 
electricity users of Fig. 3D. 

At a small-scale level of observation, the holarchy 
represents a Complex System with holons that make up the 
parts of the system. 

The holons have  
-  intended goals that are given by a user need, e.g. the 

geographical grouping of electricity users who would 
benefit by creating a “virtual energy store”, and 

-  imposed goals that are imposed on holons by 
higher-level neighbors (or by the power market model of 
Fig. 3E in the case of the highest level holon). Fig. 3.  Complex Networks as control paradigm for Complex Systems. 



 
 

 

The rules that govern the relationships between holons are 
detailed in [40]. The grouping of holons according to these 
rules results in a ‘network of networks’ (the holarchy – aka. a 
Complex Network).  

Given a certain combination of intended vs. imposed goals, 
the holarchy reaches a stable, optimal state that reflects a 
certain network topology. At this state, the holarchy’s 
network topology is characterized by a particular degree 
distribution. 

This degree distribution may correspond to either a power 
law or exponential distribution, or a combination of both, i.e. 
a power law with an exponential tail-end. The resulting 
distribution would be associated with a characteristic error 
and attack tolerance. 

By sequentially varying the weight of the imposed vs. 
intended goals of the holons (by adjusting their own needs 
and that of the market model), the topology of the network 
(which represents the physical entities of users and service 
providers/suppliers) may be manipulated to yield a desired 
degree distribution and associated error and/or attack 
tolerance (Fig. 3F). 

V. CONCLUSIONS 
Our current efforts are focused on the development of a 

mathematical model for this paradigm and its implementation 
using Multi-Agent Systems concepts. 
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