
Emergent Engineering 
for the Management of Complex Situations 

René Doursat 
Institut des Systèmes Complexes, CNRS 

and CREA, Ecole Polytechnique 
57-59, rue Lhomond 
75005 Paris, France 
+33 1 42 17 09 99 

http://doursat.free.fr 

Mihaela Ulieru 
Canada Research Chair 

Director, Adaptive Risk Management (ARM Lab) 
Faculty of Computer Science  
University of New Brunswick 

+1 (506) 458-7277 

http://www.cs.unb.ca/~ulieru
 
 

ABSTRACT 
Ubiquitous computing and communication environments connect 
systems and people in unprecedented ways, but also 
fundamentally challenge the mindset of traditional systems 
engineering. Complex techno-social systems exhibit spontaneous 
self-organization properties, based on decentralized interactions 
among a multitude of agents, that have preceded our ability as 
human designers to fully comprehend and control them. This 
should prompt us to steer away from managing details and, 
instead, focus on establishing the generic conditions for systems 
to develop and evolve under our guidance. In alignment with this 
paradigm shift we propose a methodological framework termed 
emergent engineering for deploying large-scale “eNetwork” 
systems, and illustrate it with self-organized security (SOS) 
scenarios. It involves an abstract model of programmable network 
self-construction in which nodes execute the same code, yet 
differentiate according to position. We illustrate these principles 
on a future application to SOS pointing to how this could lead to a 
new type of controllable self-organization, able to dynamically 
co-evolve the system with its environment. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – network topology, wireless networks. 

General Terms 
Algorithms, Management, Design, Human Factors, Theory. 

Keywords 
Complex Systems, Emergent Engineering, Self-Organization, 
Dynamical Networks, Cyber-Physical Ecosystems, Security, Co-
evolution. 

1. RETHINKING ENGINEERED SYSTEMS 
AS COMPLEX SYSTEMS 
Information and communication technologies (ICT) are pervasive 
in today’s world, making it a densely connected “eNetwork” at all 
scales, locally and globally. Fueled by strikingly rapid 
technological advances, wireless networks and nanomachines 
begin to blend the virtual and the physical worlds in creative 
ways. They merge single devices, departments, or enterprises into 
larger and more complex infrastructures that animate a great 
variety of “Cyber-Physical Ecosystems” (CPE) in many domains, 
e.g., industrial, artistic, educational, scientific. Every new ICT 
discovery and its application brings us closer to a global 
collaborative ecosystem that becomes more and more hybrid, 
inclusive, and virtually unlimited in its functionality. 

This poses a new grand challenge to engineers: How can we 
harness and craft this “nervous system” in such a way that it 
evolves and adapts seamlessly to demanding circumstances—able 
to not only survive the unexpected, but even thrive on it? Every 
new wireless connection, sensor network, or router added to the 
communication infrastructure eventually comes at a price, 
reflected by an overall measure of “unmanageability” of the 
surrounding complexity. We continuously endow new artifacts 
with greater capabilities to infer our context and anticipate our 
desires and needs with increasing accuracy. They add more and 
more services to an already fast growing ambient intelligent 
environment. However, every such artifact improving our comfort 
and quality of life also invites unanticipated difficulties, which 
challenge our deep-seated way of thinking about how to design 
and manage systems that support human activities. 

Imagine a self-configuring manufacturing plant [1], a self-
stabilizing energy grid [2], or a self-deploying emergency 
taskforce [3] all relying on a myriad of mobile devices, software 
agents and human users building their own eNetwork on the sole 
basis of local rules and peer-to-peer communication. The past few 
years have seen a remarkable increase in research activities across 
many disciplines to realize systems that exhibit true autonomy. 
However, while we have just begun to work on conceptual and 
technological advances toward this goal, CPEs are already living 
a life of their own. Large-scale eNetworked systems have 
spontaneously grown and reached unanticipated levels of 
complexity, beyond the boundaries of the disciplines that 
conceived their components in the first place. The march toward 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ACM-ICST Autonomics’08, September 23–25, 2008, Turin, Italy. 



decentralization and self-organization has preceded our ability to 
fully master these phenomena. 

If we can catch up and win the race, the stakes are high: emergent 
architectures based on decentralized automation, whether 3-D 
devices or n-D techno-social webs, promise to be the new 
paradigm of eNetworked systems engineering and control [4]. 
Traditionally, the role of an engineer is that of an active designer: 
she or he creates organization, system, or software blueprints with 
the end in mind. The system and its performance requirements are 
defined by hierarchical, top-down, linear thinking. By contrast, 
through their unplanned emergent behavior, eNetworked CPEs 
fundamentally defy this conceptualization approach. They push 
the engineer to become rather a passive observer of a “self-
design” process, in which the system’s organizational structure 
results from bottom-up interactions among a multitude of 
elementary components [5], [6]. Yet, design-by-emergence could 
be in fact more successful than classical design-by-planning as it 
enables the system to meet unexpected situations and dynamic 
goals in an anticipatory manner. 

This work proposes an exploration beyond the top-down 
perspective on systems design and control imposing order 
exogenously. Can we find other ways than telling each element of 
the system what to do at every step through predetermined 
strategies, assuming that all possible situations the system might 
confront are knowable in advance? One major characteristic of 
the new generation of eNetworked systems is that, given their 
very nature and scale, they cannot be a priori defined but should 
rather emerge from the interactions between individual devices 
and users. We think that such systems could be managed by 
“riding the wave” of their complexity, instead of fighting it, i.e., 
by encouraging their endogenous growth, function, stability, and 
adaptation in a bottom-up fashion. Moving farther away from the 
system’s profuse details, this approach looks rather for the 
generic conditions that will produce those details without 
dictating them.  

We term here this approach emergent engineering: it shifts the 
role of humans toward machines from micromanagers to 
lawmakers. Inspired by evolution, it is less about direct design 
than developmental and evolutionary “meta-design” [7]-[9]. 

At the core of this quest, however, lie paradoxical questions: Can 
autonomy be planned? Can decentralization be controlled? Can 
evolution be designed? Can we expect specific characteristics 
from systems that we otherwise want to let free to assemble and 
possibly invent themselves? The resolution of these apparently 
inconsistent objectives will reside in the change of scale at which 
engineering operates. The generic conditions or “laws” of self-
organization mentioned above should be instilled in every 
element of the system. No longer a separate global entity, control 
is broken down and distributed locally everywhere. 

2. PRINCIPLES OF EMERGENT    
ENGINEERING 
For clarity, we attempt to illustrate the major principles of this 
approach with a more concrete example involving emergency 
response to acute and developing disasters. In this type of 
scenario, called Self-Organizing Security (SOS) [10], several first 
responders come together in a collaborative endeavor and form 
joint teams, or “SOS networks”, to contain and manage a crisis 

situation. These teams are dynamic, short-lived meta-
organizations deployed on the fly from units belonging to 
different organizations such as military forces, police, firefighters, 
paramedics, or non-governmental organizations. SOS consists of 
networks of agents interacting intensely with each other and 
generating a collective behavior that co-evolves with the 
environmental dynamics. 

Generally, this imposes certain structural and behavioral 
constraints on the network of agents: obviously, it should not act 
freely or randomly, but according to a high-level strategy, or set 
of “policies” (called overall rules of the network in [11]). To 
enable a response adapted to the crisis dynamics, these high-level 
policies have to materialize into concrete action plans, which are 
compiled down into local rules, or “protocols”, and broadcast on 
the fly to all the agents involved in the complex situation at hand. 
Agents perform individual actions in response to both the local 
rules of the particular plan they have received, and the local 
events of the particular situation they are faced with. The overall 
impact of the individual agents is to create a collective network 
behavior (emergence), which in turn influences the agents 
(immergence). The key issue when deploying emergency 
operations in an SOS system is to find the right balance between 
individual protocols and network policies in order to achieve the 
best possible collective meta-organizational behavior. 

2.1 Architecting from the Bottom-Up Without 
an Architect: Introducing Self-Organization 
into Engineering 
As a prime example of complex systems, hybrid techno-social 
eNetworks are made of a large number of agents that interact 
locally and produce diverse types of emergent collective 
behavior. It is useful to examine the commonalities of this multi-
agent framework [12] across different domains at an abstract 
level. It generally consists of 
• a set of micro-instructions or rules on how to 

o search and connect to other agents, 
o interact with them over these connections, 
o change one’s internal state and rules, and 
o carry out some specialized function; 

• rules act upon an array of variables of two types: 
o internal developmental variables (dedicated to building 

the system—the architecting part), 
o internal functional variables (dedicated to making the 

system carry out tasks—the control part); 
• the rules can also be modulated by parameters 
• that can evolve over time, according to 
• a global fitness that the system is exhibiting with respect to 

its function in the environment (co-evolution). 

To be able to achieve this open-ended status, enabling continuous 
adaptation to the unexpected, individual agent rules cannot 
deterministically dictate what an agent must do, but rather provide 
guidelines about how to react to environmental stimuli and other 
agents’ actions. Some rules also incite the agents to behave 
proactively and start communication or function of their own 
initiative. In all cases, agents only have a limited knowledge of 
their surroundings and no view of the global picture. With this, 
two different mechanisms of agent self-assembly can be 
envisioned: 



• Predefined agents that reposition themselves in the 
network: these agents are looking for other specialized 
agents to connect and cooperate with [3]. This is the case of 
the SOS network alliance [10] involving various 
organizations with functional roles and protocols specifying 
how these roles are carried out. 

• Prepositioned agents that redefine themselves under 
induction from other agents: these agents already form a 
structure through which they can modify each other by 
exchanging rules and variables. This is the case, for 
example, of biological cells [7]-[9], or computer hosts and 
routers in a distributed energy web application [5]. In SOS 
networks, this would also correspond to a firefighter 
providing paramedical care to a victim, etc. 

Agent proximity is defined by the topology of the graph of 
interactions (agents are considered neighbors if they share a link), 
itself possibly depending on Euclidean spatial distance. Typical 
examples of spatial systems based on shortest-distance links are 
sensor networks and energy grids. For SOS networks, links are 
function of the space where the crisis occurs (e.g., an Olympic 
stadium). Examples of nonspatial systems are distributed software 
components or business collaboration networks. Many CPEs [6] 
inherently have a dual spatial/nonspatial nature, as they often 
include a physical infrastructure at a “lower” communication 
level, with a virtual overlay network at a “higher” application 
level [3], [13]. 

In summary, the complex systems viewpoint on autonomy 
introduces a distinction between the rules at the microscopic level 
of the agents, or “genotype”, and the resulting overall 
macroscopic behavior of the collectivity, or “phenotype”. In the 
SOS example, the former corresponds to the agents’ individual 
protocols creating the appropriate action plans, while the latter 
corresponds to the network mediating global policies across all 
organizations that are hosts for the deployed individual agents. In 
essence, emergent engineering consists of indirectly designing the 
genotype (or letting it evolve toward an appropriate phenotype), 
rather than directly building the phenotype. This also mirrors the 
developmental dynamics of a system, as a prerequisite to 
evolution [14]. It envisions the architecture and the function as 
(rapid) emergent outcomes of the elements’ capabilities of self-
assembling and disassembling. This is the case with SOS network 
participants who come together to form barriers around attacks 
and contain the crisis at hand, then are sent back to rest after the 
situation is resolved. 

2.2 Controlling Complexity without a 
Controller: Reintroducing a Program into 
Self-Organization 
Because it promotes the transfer of decision-making to a swarm of 
autonomous agents, the new responsibility of complex systems 
engineering is also to establish the proper rules to regain control 
of these agents at the microlevel (individual agent protocols), 
relative to a desired behavior of the system at the macrolevel 
(SOS policies and action plans). Many families of self-organized 
systems based on simple rules exhibit a variety of complex 
orderly states, whether in pattern formation (e.g., [15]), spatially 
explicit evolution (e.g., [16]), neuronal synchronization (e.g., 
[17]), swarm intelligence (e.g., [18]), collective motion (e.g., [19]) 

or statistical complex networks (e.g., [20]). However, a closer 

look reveals that this “complexity” often translates into emerging 
patterns that are either freely random or entirely determined by 
boundary conditions. What is much more challenging is how to 
harness and guide spontaneous complexity to form non-trivial 
intrinsic structures adapted to desired outcomes. Such guidance 
would require (a) preparing the generic mechanisms and rules 
acting at the microlevel that are capable of generating reliable (as 
opposed to random and unpredictable) self-assembly processes; 
and (b) steering these processes toward desired shapes and 
functions manifested at the macrolevel, by allowing the 
spontaneous generation of innovations through recombination and 
evolution. 

Figure 1. SOS as a “nervous system” controlling the crisis. 

2.2.1 C2 for Complex Systems: Growth by Positive 
Feedback, Control by Negative Feedback 
The traditional view of control engineering is that the controller is 
a separate entity that monitors and affects the main system, 
generally by feedback from its output variables onto its input 
variables [21]. In the paradigm shift toward emergent engineering, 
this system/controller pair becomes fragmented into a myriad of 
micro-system/micro-controller pairs (the agents and their 
individual rules). In most classical examples of complex systems, 
agent rules can be decomposed into two parts: (1) a positive 
feedback that amplifies small local fluctuations (micro-system), 
and (2) a negative feedback that dampens or corrects the agent’s 
response, and tunes its behavior more finely (micro-controller). 
At the emergent level, the tendency of the former is to create new 
mesoscopic or macroscopic structures, while the latter tends to 
stabilize them [13]. 

The collective dynamics resulting from the tensions between the 
overall goal of the network and the individual agent actions can 
be represented, in view of the cybernetics school [22], as an 
overarching “Command & Control” (C2, i.e., feed-forward & 
feedback) backbone (Figure 1, from [10]). It acts as a “nervous 
system” regulating individual behaviors by adapting the network 
policies in order to collectively achieve a desired action plan (e.g., 
containing the crisis at hand). C2 can be built into the 
architectural requirements of the SOS network by determining the 
local logic of the individual components (protocols) as well as 



their interactions bound by the network (organizational policies 
and governance rules). 

Insect colonies provide examples of positive feedback [18]: an ant 
deposits more pheromone where there is already pheromone; a 
termite brings more pellets of soil where there is already a heap of 
soil. In human societies, too, shoppers like buying lower priced 
products, traders like buying stock that goes up; the media likes to 
talk about what is currently talked about in the media. Starting 
from small initial fluctuations, positive-feedback agent behavior 
generally creates a single large homogeneous cluster 
characterized by some increasing quantity (concentration, density, 
price, etc.). More interesting structures can then emerge and be 
stabilized by adding negative feedback. For example, in collective 
motion [19], a bird follows the flock by continuously readjusting 
its speed and orientation. Each agent corrects small differences by 
sensing neighboring agents, and the collectivity converges, albeit 
temporarily, to a stable trajectory (the appropriate action plan). 

Relatively complex behavior can therefore result from a balance 
between genotype (the simple agent-based rules that encode 
positive feedback) and phenotype (the overall rules of the system 
providing the negative feedback resulting in the adaptive action 
plans). This is done by adjusting the individual behavior to the 
overall goal of the network. Similar negative feedback is found in 
a holonic enterprise [23] that balances the autonomy of individual 
agents with the need to cooperate and compete to achieve the 
overall goal of the system. 

In an SOS network, for example, via “orchestration and 
choreography” [24] of the processes that run across the multi-
agent system, latest Web 2.0 advances can be used to balance the 
individual protocols at the agent level (positive feedback of the 
genotype) with the overall network policies (negative feedback of 
the phenotype). The C2 coordination mechanism separates 
process from execution, acting in the background according to the 
governance rules of the overall SOS network. Meanwhile, the 
individuals, coming together from their respective military and 
civilian units, follow their own specific protocols and aim toward 
a common goal-seeking, self-organizing swarm. It is this balance 
between bottom-up protocols and top-down policies that enables 
the flexible co-evolution of the SOS network with the crisis 
dynamics. It must keep the crisis under control, while also 
addressing new events and issues that come up on the path to 
resolution. To contribute to the overarching SOS network goal, 
the individual agents must be able to absorb the shared overall 
network policies by translating them into useful executable 
actions. Strategies for balancing individual holon autonomy with 
overall network goals have been proposed for emergent virtual 
organizations [3], [10]. 

2.2.2 Controlling Self-Organization: Crafting the 
“DNA” of eNetworks 
So far, the only emergent and nontrivial architectures that we see 
around us are living organisms. This is because biological agents 
(cells) carry a set of rules (DNA) that endows them with a 
repertoire of non-trivial behaviours. Cells do not randomly mix 
but proactively position themselves. Regions of genetic 
expression are not randomly distributed but highly regulated in 
number and position. An organism’s shape dynamically unfolds 
in time, on the basis of calculations and decisions carried out by 
each cell at every time step. The sophistication of the organism is 

a reflection of the relative sophistication of the DNA, and its 
associated cell dynamics, compared to elementary volumes of 
inert physical matter that only obey simple attraction/repulsion 
dynamics. 

By analogy, our approach considers genetic-like regulation at the 
agent level (the eNetwork’s “DNA” [6]) to harness large scale 
eNetworked techno-social systems. The new challenge is to 
reintroduce a certain dosage of programmability inside free self-
organization, in the form of a developmental genotype. This 
important notion has been studied in particular in the field of 
artificial development [25], [7]-[9] and amorphous computing 
[26], [27]. Simple action-reaction rules are not sufficient in 
themselves to create complex architectures, such as growing 
adequate barriers to contain threats or attacks or guiding a crowd 
toward safety in the SOS case. More elaborate genotype logic is 
needed. In fact, the richer the information carried by the genotype 
(individual agent behaviours), the richer the variety of the overall 
phenotype (range of action plans that can emerge and be 
dynamically deployed). This is because a sophisticated genotype 
opens the door to agent differentiation via positional information 
– essential properties which enable programmability and 
evolution by combinations and recombinations of diverse agents 
into modules and hierarchical constructions. These properties are 
essential for enabling the SOS network’s continuous adaptation to 
the dynamics of a chaotic situation, otherwise impossible to 
manage. We present in Part 3 an abstract model of autonomous 
network construction and dynamics in which nodes execute the 
same program in parallel however develop into different types 
according to their (limited) positional awareness. 

2.2.3 Designing Evolution without a Designer: 
Varying the Rules and Selecting the System 
The ultimate challenge of our enterprise is to understand how a 
complex eNetwork such as SOS can evolve on the longer time-
scale, i.e., how individual agent protocols can be varied and the 
appropriate network policies selected to deploy the desired action 
plans. 

First, in order to be selected, the network’s functional success 
needs to be measured. After reaching structural maturation on a 
short deployment time scale, i.e., when the joint teams are 
deployed in response to a particular event, the SOS network 
should switch the bulk of its activity from executing the 
developmental part of its genotype to executing the functional 
part of its genotype. The former corresponds to dynamic 
architecting, which positions the actors within the network so that 
they can best perform their activity in teams. The latter 
corresponds to the adaptive control obtained by executing their 
roles within the teams to realize the most effective action plans. 

Second, once the basic “eNetwork DNA” parameters have been 
set to achieve the SOS network growth (architecture) and function 
(control), the remaining question is how to make the SOS network 
co-evolve with the developing crisis. This can be done by 
specifying how the genotype (individual agent rules) may vary 
and how the phenotype (overall network policies that enable the 
selection and deployment of appropriate action plans) may be 
selected. For example, gradual optimization can rely on a distance 
of performance to predefined goals, instead of network structure, 
allowing the most successful candidates to reproduce faster and 
mutate. 



3. AN ABSTRACT MODEL OF SELF-
MADE E-NETWORK 
In this part, we present preliminary results from an original model 
of autonomous network construction and dynamics, while we 
show its possible application to the emergent engineering of SOS 
networks in Part 4. Nodes can represent human agents who carry 
personal digital assistant (PDA) devices with wireless 
connectivity. These devices execute the same program in parallel, 
but gradually differentiate according to (limited) positional 
awareness. The self-assembly program includes routines for the 
exchange of messages and the dynamical creation or removal of 
links. It relies on a combination of “ports” and internal state 
variables derived from discrete “gradients”. Ports and gradients 
guide the new nodes to specific attachment locations in the 
developing network. As the network expands and node positions 
change, nodes adapt by switching different subsets of rules on or 
off—similar to gene activation/inhibition in biological DNA—
thus triggering the growth of specific structures such as chains, 
lattices, and more complicated composite topologies. 

3.1 Simple Chaining 
Chains are the simplest self-assembling structures that can be 
realized with two ports, X and X’, and two corresponding gradient 
values x and x’ in each node (Figure 2). Ports can be “free” (not 
linked to other ports from other nodes) or “occupied” (linked), 
while free ports can be “open” (available for a connection) or 
“closed” (disabled). New nodes that just arrived in the system’s 
space, or nodes that are not yet connected, have both ports open 
and gradients set to 0. A node i can create a link with another 
node j only through a pair of complementary open ports, here X 
and X’, with one link per port. As soon as a new link is made, 
ports are occupied and gradients are immediately updated 
according to the following rules: (a) a free port always maintains 
its value at 0 (gradient source), and (b) x is sent out through 
occupied port X’ to port X of the neighbor node with an increment 
of +1 (resp. x’, X, X’). Discrete counter increments are also the 
method of choice for spreading positional information in 
amorphous and spatial computing systems, e.g., [9], [27]. A new 

agent can connect to any available port at random, including the 
most recent and oldest nodes of the chain (Figure 2a). The 
gradient counters keep track of the nodes’ positions in the chain 
allowing, for example, to build chains of a fixed length n by 
closing any remaining open ports as soon as x + x’ = n − 1. 

Figure 2b is a step-by-step illustration of the gradient update 
routine after a new node (dashed) has connected to the system. In 
general, the new x value of a node i, denoted by xi(t+1), is set to 
xj(t) + 1 if j is the neighbor attached to iX (same with x’ and iX’). 
This ensures a natural propagation of gradient value corrections 
and converges after O(n) time steps. Note that, in order to avoid 
inconsistencies, gradient update has to be much faster than node 
addition and connectivity changes. This difference of time scales 
is simulated here by alternating gradient update and link 
formation in two embedded loops: first, nodes are visited several 
times until gradient values have converged (fast inner loop); then, 
new nodes and links are added  (“slower” outer loop). 

Thus all nodes carry the same program (their genotype or 
“DNA”), which consists of three main routines: gradient update 
(G), port management (P), and link creation (L). The gradient 
update routine G is the generic code that provides nodes with the 
positional information they need to make further decisions. 
Figure 2c is an example of port management routine P, which 
contains the heart of the logic specific to a target structure. For 
example, in the case of a 5-node chain, it orders a node to shut its 
ports whenever x + x’ = 4 (the “open” and “close” commands 
apply only to free ports, and are ignored on occupied ports). 
Routines G and P are executed by the nodes already involved in 
the network, and prepare the way for new nodes to execute L 
(Figure 2a). Routine L provides the generic logic that prompts 
new nodes to pick one of the open ports of the network at random 
to make a new connection. 

3.2 Lattice Formation by Guided Attachment 
With two pairs of ports, (X, X’) and (Y, Y’), and two pairs of 
associated gradient variables, (x, x’) and (y, y’), also set to 0 when 
the node is new, lattices can grow (Figure 3). Two nodes i and j 

Figure 2: Self-assembly of a simple chain. (a) The five main steps leading to a 5-node chain. Through the link creation routine, 
incoming nodes attach to either open ports, X or X’ (dark blue), of the forming chain. When a link is created, its ports become 
“occupied” (light blue) and gradient values are updated in all nodes (see b). When chain length is 5 (i.e., x + x’= 4), all open 
ports are closed (gray; see c). (b) Detailed substeps of the value-passing gradient update routine (see text). (c) Port management 
routine of the “DNA” program in each agent: ports close when length is 5.  



can now form four possible links involving pairs of 
complementary ports (Figure 3a). If left without additional 
constraints, i.e., only routines G and L, but no P, the networking 
process will grow branches that criss-cross randomly, where each 
branch maintains its own gradient values along its length 
(Figure 3b). More orderly network, such as a regular square 
lattice of fixed size n × m, can be programmed by endowing P 
with specific port-shutting commands that strictly regulate the 
pool of open ports at any time in the life of the structure 
(Figure 3d). Therefore, P guides node attachment toward a few 
locations of interest, similar to blinking beacons on a landing 
runway (Figure 3c). A new node can then randomly choose 
among one of these few locations, according to L. The general 
building principle of this example is that a row or column cannot 
be augmented by a new node if it leaves a hole in a nearby 
column or row. In essence, ports X and Y are permanently shut, 
while ports X’ and Y’ are opened only in the inner “corners” of 
the forming lattice (Figure 3c,e). For further implementation 
details, see [28]. 

3.3 Cluster Chains and Lattices 
In biological development, the position and number of individual 
cells is very imprecise, while the structures and organs they form 
are reliably placed. Similarly, programmed network self-assembly 
could also be irregular at the microscopic level of the nodes, 
while retaining an orderly arrangement at the higher, 
“mesoscopic” levels of clusters of nodes. To introduce this 
element of variability and redundancy in the system, in addition 
to the fundamental programmability of an emerging structure, one 
can “thicken” chains and lattices by replacing single nodes with 
clusters (Figure 4). This can be done through one additional port, 
C (as in “cluster” or “clique”) that allows multiple nodes with 
identical x and y gradient coordinates to form random connections 
with each other, thus cluster into families according to their 
gradient values. The C port represents an extra “nonlinear” 
dimension added to the single pair of ports (X, X’) of 1-D chains, 
or the two pairs of ports (X, X’), (Y, Y’) of 2-D lattices. Another 

new feature is that nodes are also allowed to make multiple 
connections per port, whether X, Y or C (Figure 4a). Thus, in the 
case of a chain, a new node has two possibilities of attachment: it 
can either thicken or lengthen the chain. Either it connects to an 
existing node through C, in which case it inherits the coordinates 
of that node’s cluster, or it connects as before via the X or X’ port, 
in which case it pioneers the creation of a new cluster at one end 
of the chain and all coordinates are updated according to the usual 
gradient dynamics. After their first link, new nodes may also 
establish a few supplementary connections through any of their 
ports, under the constraint of coordinate consistency (−1 and +1 
via ports X, Y or X’, Y’, equal coordinates via port C). 

Figure 3: Self-assembly of a lattice. (a) Nodes have four ports, X, X’, Y, and Y’, and can form either X↔X’ or Y↔Y’ links. 
(b) Without any port management routine P, node chains (schematized by curved lines) form and intersect in a random 
manner. (c) Condensed view of an example of 5×3 lattice self-assembly in oderly “waves” of node attachment: the only 
available spots offered by open ports are internal “corners”. (d) An excerpt of the P routine in every node (rules P2 and P3 
explained in the text). (e) A generic illustration of lattice-building attachment waves. 

Similar to cellular proliferation in morphogenetic tissues and 
organs, this proliferation of nodes in structured networks 
introduces redundancy and “failover” safety. Unlike single-node 
chains, the failure of one link in a cluster chain does not imply the 
failure of the whole structure. Yet, while relying on a fluctuating 
swarm of agents for its robustness, the overall topology of a 
programmed network is still not left to chance but narrowly 
guided by the genotype of the attachment rules G, P and L to 
grow desired structures. 

3.4 Modular Structures by Local Gradients 
More complicated structures can be developed by composing 
multiple chains and lattices. To allow the creation of modules 
with their own identities and local positional information, one can 
find again inspiration from biology, in particular the concepts of 
modularity and homology central in evo-devo [29]. Modules are 
similar to “limbs” that have distinct morphologies and 
geographies. This is modeled here by different coordinate systems 
based on tags a, b, c, etc. Gradient ports in one part of the system, 
e.g., a chain, are denoted by (Xa, X’a), while ports in other 
branches will be (Xb, X’b), (Xc, X’c), and so on. Accordingly, 
routine L is amended so that links cannot be created between ports 
with different tags. 



In the elementary scenario of Figure 5, only the X’a port is open in 
the beginning (Figure 5a-b). When the third node has attached, 
another pair of ports (Xb, X’b) is created on that node and only 
port X’b stays open (Figure 5c). This particular event is triggered 
by the positional information carried by the node: in this example, 
the P routine (Figure 5g) stipulates that when xa = 2, a node must 
differentiate into a bifurcation node, i.e., create another pair of 
ports and their corresponding gradient variables. After this event, 
new nodes can attach to either open port, X’a or X’b (Figure 5d), 
i.e., either choose to first augment the original chain or its branch. 
As in the previous structure formations, however, the order of 
node attachment does not influence the final structure. New nodes 
carry an untagged pair of ports (X, X’) and acquire the tag of their 
first contact. The same “stop-rule” of chains (Figure 2c) applies 
here when the b branch reaches length nb = 3, i.e., xb + x’b = 2, 
closing the only open port X’b (Figure 5e). Independently, another 
branch c grows from the fifth node of chain a and stops at nc = 4 

, X’b, Yb, Y’b) and spins off 
a new 3×3 lattice tagged b, and so on. 

nodes, while chain a stops at na = 6 nodes. 

Another example of branching structure based on lattices instead 
of chains is shown in Figure 6a: here, once a 3×3 lattice tagged a 
has finished self-assembling, its last node (xa, x’a, ya, y’a) = (2, 0, 
2, 0) creates a new quartet of ports (Xb

Finally, whether based on 1-D chains or 2-D lattices, modular 
structures can also be “thickened” with clusters of nodes by 
adding a C port to each node, as explained in the previous section. 
An example of complex programmed network made of a 
branching chain (including a cycle) of clusters is shown in 
Figure 6b. 

4. GUIDELINES FOR A CONCRETE 
SCENARIO 
The previous section described abstract principles of self-made 
networks that have a purely endogenous ability to form precise 
configurations. It established new foundations for the emergence 
of non-random, programmable patterns exhibiting intrinsic 
structures that are neither repetitive nor imposed by the 
environment. Starting from these premises, the model must now 
be completed with other important features in order to be 
applicable to concrete problems such as the deployment of an 
SOS intervention taskforce. We identify and discuss here four 
notions: (1) physical space, (2) external events, (3) agent 
functionality, and (4) action plans. 

4.1 Physical Space 
As mentioned in the introduction, most real-world eNetworks 
such as SOS combine non-spatial graph topologies (e.g., 
connecting organizations and entities), with Euclidean graph 
topologies (e.g., connecting people and equipment on the field) at 
different degrees. The abstract mechanisms of programmed 
attachment described in Part 3 create purely non-spatial graphs 
that are displayed in 2-D figures only for convenient viewing. So 
far, nodes do not have any location and can potentially “see” all 
other nodes. The discrete positional information provided by the 
gradients is purely internal to the link structure. 

Figure 4: Cluster chain. (a) Detailed 3-cluster chain: 
internal (orange) links connect the C ports of nodes with 
same (x, x’) values, while (blue) links between clusters 
form the chain. A new node (gray) connecting through C 
adopts the cluster’s values. (b) Simulation with 5 clusters 
and ~20 nodes/cluster. On the other hand, if nodes represent agents and devices 

interacting in real space, the dynamics must be modified to take 
into account the effects of metric distance. In addition to the 
internal gradient values (x, x’, y, y’, ...) that they carry, nodes are 
now also labeled by a real vector r = (rx, ry, rz). Space can then 
intervene at two levels: by limiting the scope of pre-attachment 
detection (nodes can connect only to nearby nodes, within a 
certain radius), and by giving a mechanical meaning to the nodes 
and links. For example nodes can be interpreted as electrically 
charged particles, and links as elastic springs. Through 
attraction/repulsion forces, connected nodes would tend to 
position themselves at an optimal distance from each other 
without colliding. These mechanisms are typically implemented 
in force-based layout algorithms [30] to make a graph unfold and 
self-arrange for best visualization of its structure. The same 
principles could also serve in real-world situations to guide users 
with mobile devices containing GPS or local positioning functions 
(e.g., embedded in “augmented-reality” glasses) toward specific 
precalculated locations. 

In SOS intervention scenarios, an important part of the network of 
agents is essentially spatial, and most of the intervention efforts 
will be focused on placing people, units, vehicles, equipment 
where they are needed to form effective functional patterns. For 
example, during the evacuation of a stadium, space could be 
partitioned into different sectors organized around the nearest 
exits and the center of the field to direct the flow of the crowd 



more efficiently (Figure 7). Military or law-enforcement 
personnel could form human chains and security cordons in 
complex but targeted branching structures serving multiple 
purposes: encircling the scene of a threat or accident, guiding 
people toward the exits, transporting victims to emergency 
vehicles, and building specific local formations such as enclosed 
areas containing equipment or medical field units (rectangle in 
Figure 7). 

Figure 5: Branching scenario (see text). (a,b) Beginning of chain a. (c) Branch b starts. (d) Two possible next steps. (e) Chain b 
stops at length 3. (f) Final outcome, including a 4-node branch c. (g) This exact structure is prescribed by the port management 
program P carried by each node. 

4.2 External Events 
Naturally, the propensity to create structured network formations 
must also be influenced and modified by the environment in 
which those formations will function. In Part 3, node attachment 
was based on port availability driven only by positional gradient 
values. This internal dynamics must now interact with the 
external dynamics of the system’s context, along with its 
boundary conditions and events occurring unexpectedly. 
Environmental landmarks can play different roles in the self-
structuring process: they can act as triggers, attractors or 
obstacles. 

Figure 6: Two simulations of programmed modular 
networks. (a) Branching 3×3 lattices attached by their 
corners. (b) Complex branching chain of node clusters, 
including a cycle. 

• In the SOS example, a located threat or accident can be a 
starting point that triggers the aggregation of security 
agents into circular chains around it. This could be 
implemented through special event-driven ports, searching 
for external stimuli to virtually “connect” to. 

• Then, other human cordons can branch off from this initial 
structure and grow like trails aiming toward other attractor 
points, e.g., exits and emergency vehicles. This behavior 
could be implemented by new “tropism” rules: mobile 
positioning devices with a knowledge of a facility’s map, or 
with remote sensing capabilities, could bias the attachment 
routines toward target points of interest, “pulling” a chain 
formation toward them. 

• Finally, without environmental constraints, this type of 
deployment would appear like a star shape with a central 
hub and a few spokes radiating from it symmetrically. 
However, once immersed in the geography of the stadium, 
this ideal structure must adapt and bend around obstacles, 
e.g., turn around corners and stretch across aisles. Such 
flexibility would naturally result in part from the interaction 
of human agents with their physical surroundings, but it 
could also be facilitated by force-based layout algorithms of 
the type mentioned above. 

4.3 Agent Functionality 
Another important aspect not included in the abstract model is the 
diversity of functional roles that agents may take on, in addition 
to their self-assembly capabilities. In real-world situations such as 
SOS, the problem is in fact reverse: police officers, paramedics, 
firefighters, military, etc., already come from different 
professional trainings and experiences and the new challenge is to 



make them interact in a less centralized and more autonomous 
way, i.e., by carrying automated positioning devices that guide 
them toward optimal places. In any case, the model must now mix 
various predefined agent identities (the first case of two seen in 
the introduction), before they even further differentiate by 
gradient position inside the structure. This natural heterogeneity 
of agents could be reflected in the model by a heterogeneity of 
ports and gradients, and diversified attachment rules that depend 
on agent types. This would result in various subnetworks of two 
kinds: “intra-category” subnetworks linking agents of the same 
profession (police subnetwork, medical subnetwork) and “inter-
category” subnetworks combining agents of different professions 
together, e.g., into smaller intervention units containing a few 
members of each type. 

4.4 Action Plans 
Finally, as discussed in the introduction, the adequacy or “fitness” 
of the deployed network to the crisis situation, both in its structure 
and function, will also critically depend on a two-way 
communication between the agents and command headquarters. 
Effective emergency deployment cannot rely exclusively on peer-
to-peer self-organization at the local level. Techno-social 
networks still need global monitoring and orchestration. 
Dynamical adaptation to an evolving crisis basically happens at 
two levels: (a) quick adaptation to local circumstances at the level 
of the human agents (collision avoidance, common sense 
reactions, etc.) under the same rules of deployment, and (b) major 
changes of strategy at the command level that change the rules of 
deployment. High-level C2 action plans would set only the global 
course of the action, based on symbolic codenames (“raid”, 
“evacuation”, “withdrawal”, etc.), while the low-level 
implementation details are carried out by individual agent 
protocols (real-time positioning). Action plans are compiled down 
into local rules of attachment and broadcast to all agents. Thus, 
the network can adapt to new incidents and episodes of an 
evolving crisis by reprogramming the agents’ PDAs on the fly to 

create new formations. 

In summary, future work can expand the abstract algorithmic 
rules (gradient update G, port management P, and link creation L) 
to take into account spatial extension, external events, agent 
diversity, and hierarchical command. By implementing these four 
principles, in addition to intrinsic self-connectivity, the SOS 
scenario discussed here as an illustration of a self-organized and 
structured eNetwork could become functional. It would involve 
teams that create specific, but adaptive, spatial architecture to 
contain the hazard, while directing the crowd toward safety. This 
dynamical process would be continuously adjusting to the crisis 
dynamics, including its unexpected new events and effects. 

The effectiveness of the SOS network would depend on how the 
genotype is designed (i.e., how individual roles are specified 
through protocols) in such a way as to obtain maximal synergy 
under the overarching constraints imposed by the phenotype 
(reflected in the SOS network policies). It is this continuous 
“balancing act” between individual agent autonomy and overall 
goals (previously explored in holonic enterprises [31]) that would 
enable the emergence of effective barriers, growing when and 
where needed, to contain the unexpected developing threats and 
attacks. This could ensure a continuous adaptation and co-
evolution with a crisis dynamics by making an SOS network (as 
the controller) “weave itself” into the situation to control like a 
nervous system, growing new connections and “nerves” around 
important events and locations. 

5. ACKNOWLEDGMENTS 
This collaborative work has been made possible in part by the 
Scientific Services of the French Embassy in Ottawa, through 
their funding of R. Doursat’s visit to M. Ulieru’s laboratory at 
UNB. We thank Adam MacDonald for his excellent work in 
producing the computer simulations. 

6. REFERENCES 
[1] Ulieru, M., and Cobzaru, M. 2005. Building holonic supply 

chain management systems: An e-logistics application for 
the telephone manufacturing industry. IEEE Transactions on 
Industrial Informatics 1, 1 (Feb. 2005), 18-31. 

[2] Grobbelaar, S., and Ulieru, M. 2006. Self-organizing cyber-
systems as infrastructure for optimizing power distribution 
networks. Annual Conference of the South African Institute 
of Computer Scientists and Information Technologists 
(Capewinelands, South Africa, October 9-11, 2006). 
SAICSIT’06. 

[3] Ulieru, M., and Unland, R. 2004. Emergent e-Logistics 
infrastructure for timely emergency response management. 
In Engineering Self-Organising Systems: Nature Inspired 
Approaches to Software Engineering, G. Di Marzo 
Serugendo et al., Eds. Springer-Verlag, Berlin, 139-156. 

Figure 7: Schematic view (not a simulation) of a possible 
SOS scenario within the space of a stadium, that would 
combine programmed networking and dynamic interaction 
with the environment. Growing cordons of security agents 
(orange) encircle the threat (red), guide the crowd (green) 
toward the exits, carry victims to emergency vehicles (blue, 
driving in and out through gates under the bleachers), and 
create special enclosed spaces on the field (cycle). 

[4] Ulieru, M. 2004. Emerging computing for the industry: 
Agents, self-organization and holonic systems. Workshop on 
Industrial Informatics (Busan, South Korea, November 2-6, 
2004). IECON’04. 

[5] Carreras, I., Miorandi, D. and Chlamtac, I. 2007. From 
biology to evolve-able ICT systems. 1st International 
Workshop on eNetworks Cyberengineering, IEEE Systems 



Man and Cybernetics Conference (Montreal, Canada, 
October 7-10, 2007). IEEE SMC’07. 

[6] Ulieru, M. 2007. Evolving the “DNA blueprint” of eNetwork 
middleware to control resilient and efficient cyber-physical 
ecosystems. 2nd International Conference on Bio-Inspired 
Models of Network, Information, and Computing Systems 
(Budapest, Hungary, December 10-14, 2007). 
BIONETICS’07. 

[7] Doursat, R. 2006. The growing canvas of biological 
development: Multiscale pattern generation on an expanding 
lattice of gene regulatory networks. InterJournal: Complex 
Systems 1809. 

[8] Doursat, R. 2008. Organically grown architectures: Creating 
decentralized, autonomous systems by embryomorphic 
engineering. In Organic Computing, R. P. Würtz, Ed. 
Springer-Verlag, Berlin, 2008, 167-200. 

[9] Doursat, R. 2008. Programmable architectures that are 
complex and self-organized: From morphogenesis to 
engineering. 11th International Conference on the Simulation 
and Synthesis of Living Systems (Winchester, UK, August 
5-8, 2008). ALIFE XI. 

[10] Ulieru, M. 2008. Enabling the SOS network, Proceedings of 
the IEEE Systems, Man and Cybernetics Conference (SMC 
2008), October 12-15, 2008, Singapore. 

[11] Ulieru, M. and Verdon, J. 2008. IT revolutions in the 
industry: From the command economy to the eNetworked 
industrial ecosystem. 1st International Workshop on 
Industrial Ecosystems, IEEE International Conference on 
Industrial Informatics (Daejoen, Korea, July 13-17, 2008). 

[12] Macal, C. M. and North, M. J. 2006. Tutorial on agent-based 
modeling and simulation, Part 2: How to model with agents. 
In Proceedings of the 2006 Winter Simulation Conference. 
L. F. Perrone et al., Eds., 73-83. 

[13] Grobbelaar, S. and Ulieru, M. 2007. Complex networks as 
control paradigm for complex systems. 1st International 
Workshop on eNetworks Cyberengineering, IEEE Systems 
Man and Cybernetics Conference (Montreal, Canada, 
October 7-10, 2007). IEEE SMC’07. 

[14] Kauffman, S. 2008. Reinventing the Sacred. Basic Books. 
[15] Gierer, A. and Meinhardt, H. 1972. A theory of biological 

pattern formation. Kybernetik 12, 30-39. 
[16] Hoelzer, G., Drewes, R., Meier, J. and Doursat, R. 2008. 

Isolation-by-distance and outbreeding depression are 
sufficient to drive parapatric speciation in the absence of 
environmental influences. PLoS Computational Biology 4, 7, 
e10001262008. 

[17] von der Malsburg, C. 1999. The what and why of binding: 
The modeler’s perspective. Neuron 24 (Sep. 1999), 95-104. 

[18] Bonabeau, E., Dorigo, M. and Theraulaz, G. 1999. Swarm 
Intelligence: From Natural to Artificial Systems. Oxford 
University Press. 

[19] Grégoire, G. and Chaté, H. 2004. Onset of collective and 
cohesive motion. Physical Review Letters 92, 025702. 

[20] Barabási, A.-L. and Albert, R. 1999. Emergence of scaling in 
random networks. Science 286, 5439, 509-512. 

[21] Isermann, R. 1996. Digital Control Systems. Springer-
Verlag, New York. 

[22] Heims, S. J. 1991. The Cybernetics Group. MIT Press. 
[23] Ulieru, M., Brennan, R. and Walker, S. 2002. The holonic 

enterprise: A model for Internet-enabled global supply chain 
and workflow management. International Journal of 
Integrated Manufacturing Systems 13, 8, 538-550. 

[24] Peltz, C. 2003. Web services orchestration and 
choreography. Computer 36, 10 (Oct. 2003), 46-52. 

[25] Bentley, P. and Kumar, S. 1999. Three ways to grow 
designs: A comparison of embryogenies for an evolutionary 
design problem. In Proceedings of the Genetic and 
Evolutionary Computation Conference (Orlando, Florida), 
W. Banzhaf et al., Eds. Morgan Kaufmann, vol. 1, 35-43. 

[26] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., 
Knight, Jr., T., Nagpal, R., Rauch, E., Sussman, G. and 
Weiss, R. 1999. Amorphous computing. MIT Artificial 
Intelligence Laboratory memo 1665 (Aug. 1999). 

[27] Nagpal, R. 2002. Programmable self-assembly using 
biologically-inspired multi-agent control. 1st International 
Conference on Autonomous Agents (Bologna, Italy, July 15-
19, 2002). 

[28] Doursat, R. and Ulieru, M. 2009, IEEE Transactions on 
Systems, Man and Cybernetics, Special Issue on Engineering 
Cyber-Physical Ecosystems, to appear July 2009 
(submitted). 

[29] Callebaut, W. and Rasskin-Gutman, D., Eds. 2005. 
Modularity. MIT Press 

[30] Fruchterman, T. M. J. and Reingold, E. M. 1991. Graph 
drawing by force-directed placement. Software—Practice 
and Experience 21, 11 (Nov. 1991), 1129-1164. 

[31] Ulieru, M. and Grobbelaar, S. 2006. Holonic stigmergy as a 
mechanism for engineering self-organizing applications. 3rd 
International Conference of Informatics in Control, 
Automation and Robotics (Setubal, Portugal, August 1-5, 
2006). ICINCO’06.

 


	1. RETHINKING ENGINEERED SYSTEMS AS COMPLEX SYSTEMS
	2. PRINCIPLES OF EMERGENT    ENGINEERING
	2.1 Architecting from the Bottom-Up Without an Architect: Introducing Self-Organization into Engineering
	2.2 Controlling Complexity without a Controller: Reintroducing a Program into Self-Organization
	C2 for Complex Systems: Growth by Positive Feedback, Control by Negative Feedback
	2.2.2 Controlling Self-Organization: Crafting the “DNA” of eNetworks
	2.2.3 Designing Evolution without a Designer: Varying the Rules and Selecting the System


	3. AN ABSTRACT MODEL OF SELF-MADE E-NETWORK
	3.1 Simple Chaining
	3.2 Lattice Formation by Guided Attachment
	Cluster Chains and Lattices
	3.4 Modular Structures by Local Gradients

	4. GUIDELINES FOR A CONCRETE SCENARIO
	4.1 Physical Space
	External Events
	4.3 Agent Functionality
	4.4 Action Plans

	5. ACKNOWLEDGMENTS
	6. REFERENCES

