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Abstract: We shed light on the disruptive advances brought by the ubiquity of 
computing and communication environments, which link devices and people in 
unprecedented ways into a new kind of techno–social systems and 
infrastructures recently named ‘cyber-physical ecosystems’ (CPE). While 
pointing to fundamental biases that prevent the traditional engineering school 
of thought from coping with the magnitude in scale and complexity of these 
new technological developments, we attempt to lay out the foundation for a 
new way of thinking about systems design, referred to as emergent 
engineering. One major characteristic of CPE is that, given their very nature, 
they cannot be a priori defined but rather emerge from the interactions among a 
myriad of elementary components. We show how this emergence can be guided 
by balancing positive and negative feedback, which tunes the growth of new 
configurations and adapts the system to sharp and unexpected changes. Rather 
than attempting to design the system as a whole, the components of the system 
are endowed with capabilities of dynamic self-assembly, disassembly and 
re-assembly to enable ‘evolve-ability’. As paradoxical as it may seem to the 
classically trained systems engineer, this new attitude of the designer as an 
‘enabler’ (vs. ‘dictator’ of a system’s blueprint) allows the system to seamlessly 
adapt its development and evolve to meet dynamic goals and unexpected 
situations in an anticipative manner – an impossible feat under the traditional 
approach. To the extent that it produces new functionality, the proposed 
method enables a system to evolve via its ability of pervasive adaptation. 
Emergent engineering lies at a boundary where theoretical discovery meets 
systems engineering, computing and communications into a new convergent 
science of complex systems design. It currently transforms systems and 
software engineering by embracing various highly interdisciplinary 
perspectives. 
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1 Introduction 

Information and communication technologies (ICT) pervading everyday objects and 
infrastructures, the future ‘Internet of Things’ (ITU Internet Reports, 2005) is envisioned 
to undergo a radical transformation from today’s mere communication highway into a 
vast hybrid network seamlessly integrating physical, mobile and static systems to power, 
control or operate virtually any device, appliance or system/infrastructure. Manipulating 
the physical world will occur locally, but control and observability will be enabled safely 
and securely across an overlay network that we broadly refer to as an ‘eNetwork’. Such 
eNetworks will enable the spontaneous creation of collaborative societies of otherwise 
separate artefacts, referred to as ‘cyber-physical ecosystems’ (CPE).1 Their examples 
range from self-reconfiguring manufacturing plants (Ulieru, 2004) and self-stabilising 
energy grids to self-deploying emergency taskforces, all relying on a myriad of mobile 
devices, software agents and human users that would build their own eNetwork on the 
sole basis of local rules and peer-to-peer communication (Dressler, 2007). In such 
‘opportunistic ecosystems’ (herewith referred to as eNetworked CPE) that will make the 
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Internet of Things, distributed systems at various levels of resolution, ranging from single 
devices to spaces, departments and enterprises, are brought together into a larger and 
more complex ‘system of systems’, in which the individual properties or attributes of 
single systems are dynamically combined to achieve an emergent desired behaviour of 
the synergetic ecosystem. 

The dramatic progress of CPE technologies is envisioned to reach unanticipated 
levels of complexity, beyond the boundaries of the disciplines that conceived their 
components (CPS, 2008). This challenges the traditional engineering school of thought in 
disruptive ways, given that, by their very nature, CPE cannot be a priori defined, but 
rather emerge from the interactions between individual systems’ (and people’s), 
interactions facilitated by the eNetworks. This requires to drastically revise the traditional 
top–down perspective on system design and control, which aimed at imposing order 
exogenously, telling each element of the system what to do at every step through 
predetermined strategies, and assuming that all possible situations the system might 
confront are knowledgeable in advance. Instead of fighting it, eNetworked CPE could be 
managed by ‘riding the wave’ of their own complexity and rather let systems grow, 
function and stabilise – even adapt and improve – endogenously, in a ‘bottom–up’ 
fashion. 

2 Towards a new way of thinking about systems design 

We address the radical shift of paradigm in systems and software engineering caused by 
the irruption of ubiquitous computing and communication environments. The accelerated 
expansion of eNetworks, tightly linking systems and people in unprecedented ways, has 
enabled a spontaneous and uncontrolled ‘bottom–up’ emergence of hyper-distributed 
CPE. Machines, critical infrastructures, softwares and users are now blended at a 
magnitude and level of complexity that exceeds the traditional ‘top–down’ engineering 
mindset. This has puzzled systems and software engineers for some time now and started 
a worldwide revolution (IT Revolutions, 2008) that aims at a new way of thinking about 
such complex systems. The new quest is to find appropriate methods to manage the 
magnitude of scale and complexity of large CPE. 

One major characteristic of large interdependent CPE is that, by their very nature, 
they cannot be a priori defined but rather emerge from the interactions between 
individual machines and people, facilitated by eNetworked communication. Recent 
attempts to understand and handle these new types of networks point to an alternative 
school of thought in systems and software engineering, questioning the main stream in 
disruptive ways. Instead of defining the system and its performance requirements in 
advance, following a top–down hierarchical thinking (Figure 1(a), inspired by Carreras 
et al., 2009), the engineer must rather act as a facilitator to support and guide the 
complex system through its process of ‘self-design’, which generates organisational 
structure from the bottom–up interactions among a myriad of elementary components 
(Figure 1(b)). As paradoxical as it may seem to the classically trained systems engineer, 
this new attitude of the engineer as enabler (vs. ‘dictator’ of a system’s blueprint) allows 
the system to seamlessly adapt its development and evolve to meet dynamic goals and 
unexpected situations in an anticipative manner – an impossible feat under the traditional 
approach. 
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Figure 1 The radical shift in design paradigm: (a) top–down design and (b) bottom–up ‘design by 
emergence’ (see online version for colours) 

Building on these trends, time is ripe to capitalise on the recent advances in systems 
engineering, computing and communications, and develop a new, convergent science of 
complex systems design. The significant difficulty of this pursuit is that it lies at the 
junction between multiple disciplines: engineering (dynamical systems and control), 
communications (networks), computer science (agent-based modelling and simulation 
(ABMS)), physics (statistical mechanics) and biology (self-organisation in 
morphogenesis, homeostasis and evolution). We need to continue building upon the latest 
paradigms, through which the new school of thought is currently transforming systems 
and software engineering, towards a global approach embracing various perspectives 
from all the above disciplines. We propose to call this unified theoretical effort emergent 
engineering. 

One major mandate of the new school of thought is to formulate and define the 
concepts of emergent engineering from this radically new, interdisciplinary perspective, 
as suggested in Lee (2007): 

“Today’s computing and networking technologies, however, may have 
properties that unnecessarily impede progress towards these 
applications Many of these applications may not be achievable without 
substantial changes in the core abstractions To realize the full potential of 
Cyber-Physical Systems, we will have to rebuild computing and networking 
abstractions. These abstractions will have to embrace physical dynamics and 
computation in a unified way”. 

This new school of thought encompasses trends in computing and communications as 
well as networks. In this paper, we attempt to lay out the basis for new concepts and 
abstractions able to contribute to the development of emergent engineering. Using the 
paradigms of complexity science, we rephrase the classical concepts of engineering 
design and systems control respectively, in terms of developmental emergence,
adaptation and evolvability found in natural systems to propose a breakthrough approach 
to the architecting and control of future eNetworked CPE. We proceed by identifying and 
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responding to several fundamental biases of traditional engineering in Section 3, and 
illustrate these new abstractions on a model of self-made network that we propose in 
Section 4. 

3 Fundamental biases carried on from the traditional engineering school 

3.1 Traditional engineering requires a system to be well defined 

Generally, engineering is about the design of bounded, static systems that can be clearly 
and completely defined around specific operating points or regions. As systems that 
continuously adapt and evolve in spontaneous, uncontrollable dynamics, eNetworked 
CPE cannot be predefined by the designer, be well defined itself. What characterises such 
large-scale complex systems with unpredictable dynamics is that non-trivial, large-scale 
order can be produced by simple processes involving interactions operating locally on 
simple agents or components. For such systems – termed emergent holarchies in Ulieru 
(2004) – ‘becoming’ is ‘being’ (Minai et al., 2006). This stands in sharp contrast to the 
classical paradigm in engineering with its clear distinction between the design and 
production phase, on the one hand, and the functional phase, on the other hand. Even 
systems usually considered to be ‘adaptive’ (such as adaptive controllers or neural 
networks) follow this two-phase paradigm, allowing adaptation only in the superficial 
sense of parameter adjustment – whereas complex systems change not only their 
parameters but also their fundamental structures and processes. This is the essence of the 
paradigm shift followed by the new school of thought, and the motivation of our work. 
As stated in Carreras et al. (2007), Lee (2007), and Alderson and Doyle (2009), we need 
to design for emergence, that is, for systems that fundamentally and continually adapt and 
evolve. 

As both a system and an evolving concept at the same time, ‘evolution’ for 
eNetworked CPE should not only be construed as a method to optimise the system but 
more importantly as an intrinsic property of the system to be designed (Carreras et al., 
2007). Most of complex systems engineering research has focused so far on specific 
domains such as multi-agent systems (Ulieru, 2004), collective robotics and swarms 
(Gross et al., 2006), and networks (Newman, 2006). However, clues towards a general 
strategy come from the latest insights into developmental biology (Kauffman, 2008), 
where evolution’s profound success is supported by the meta-attribute of evolvability as 
the ability of the configuration space (in this case, the space of genotypes or phenotypes) 
to produce an endless supply of viable configurations with remarkably few obvious dead 
ends. Emergent engineering promotes ‘evolve-ability’ (as per Carreras et al., 2007) as a 
new paradigm for designing systems capable of evolving towards dynamically changing 
goals by continuously adapting to unexpected situations without human intervention 
(Marzano and Aarts, 2003). 

Another fundamental insight provided by emergent engineering is that highly complex 
functional systems2 can only arise through evolutionary processes of selection in the 
context of actual tasks. This fundamentally contrasts with ongoing efforts to design large 
real-time response systems through specification followed by implementation, which is 
still the case of even today’s distributed systems, applications and techniques involved in 
multi-agent systems, service-oriented architectures or Web 2.0 and semantic Web – a 
lingering problem that, for example, ‘organic computing’ is also trying to address 
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(Würtz, 2008). Typically, these approaches stem from the traditional top–down design, 
which ‘hardwires’ adaptability into the system’s blueprint. The blueprint is being while 
designed in a top–down fashion, thus is fixed, impossible to adapt or change itself 
(Carreras et al., 2007), designers assume a fixed set of scenarios, decide on a limited 
range of operating conditions and then build a system that is optimised (in terms of 
performance) for the chosen applications. Moving farther away from direct design and 
from the system’s profuse details, emergent engineering (EE, 2002), looks rather for the 
generic conditions that will produce those details without dictating them, through a 
process of developmental and evolutionary ‘meta-design’. 

As we will attempt to demonstrate through our model in Section 4, emergent 
engineering endows a CPE with an ability to evolve through a bottom–up design-by-
emergence approach. Our approach suggests that, rather than attempting to carefully 
define the system as a whole, efforts should be invested in carefully designing the 
components of the system and endow them with capabilities of dynamic self-assembly, 
disassembly, and re-assembly, in order to enable ‘evolve-ability’. Thus, rather than 
improving the design of a given architecture, the new challenge is to create the premises 
that can support the self-design of a whole family of possible architectures, guided 
by their intrinsic assembly laws and the extrinsic environmental conditions. As in a 
jigsaw-puzzle metaphor of system assembly, a component represents a piece of the 
puzzle, while its binding affinities with other components are embodied in the ‘shape’ of 
this piece. At any instant, the system-puzzle finds itself in a certain state, corresponding 
to a particular compatible arrangement of its pieces. Complex self-assembling systems 
are multifaceted puzzles: the fit between components is approximate or flexible; 
component shapes are not unique, allowing for many permutations and equivalent 
binding configurations; and no one moves the pieces. Rather, old bindings undo 
themselves and new ones appear, thus seamlessly reconfiguring the system as a function 
of the ever-evolving environmental circumstances. 

The proposed paradigm shift fundamentally challenges the structured and predefined 
design paradigm of traditional engineering, which envisions each piece as having a 
predetermined place and functionality in the overall system, crafted for a predetermined 
scope. Although this radical shift in systems thinking (Boardman and Sauser, 2007) 
brings unease to the mainstream engineering community at large, it is so far the only path 
to approach system design for the large-scale eNetworked CPE that are about to shape 
our world’s trajectory in unprecedented ways (IT Revolutions, 2008). Emergent 
engineering enables the creation of new dynamics of large-scale systems and 
infrastructures, as well as new methods for managing the complex dynamics of 
unpredictable complex situations (EE, 2002). 

3.2 Traditional engineering requires a system’s performance to be specified 

Traditional engineering design relies upon a clear definition of the system’s performance
based on the assumption that the system is itself clearly definable. In that context, new 
and surprising behaviour is construed as anything that falls outside of the system’s known 
or predetermined behaviour and regarded as highly undesirable. Designers assume and 
predict a finite and fixed set of scenarios, decide on a limited range of operating 
conditions and then build a system that is optimised (in terms of performance) for the 
chosen applications (Carreras et al., 2007). 
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However, as much as one would want, it is not possible to predefine performance 
criteria for an evolving complex system exhibiting unpredictable emergent behaviour that 
defies cause-effect behaviour. Here, the performance is rather measured by the ability of 
the system to adapt and accommodate sharp (internal or external) disturbances and 
dramatically changing operating conditions, while maintaining functionality. Emergent 
engineering suggests an innovative and original way to address this very difficult 
problem, namely by regarding performance as an emergent property of the adaptive 
system and designing a controller capable to co-evolve with the adaptive system to 
seamlessly accommodate such sharp changes in the emergent system behaviour. The 
system’s performance is measured by the system’s ability to stabilise quickly around a 
new operating point far from equilibrium, which emerges from the sharp shift in 
environmental conditions. This is illustrated by the methodology presented in Section 4. 
A dynamic fitness function that emerges while the system abruptly adapts to sharp 
changes in operating conditions is ‘tuned’ via negative feedback to stabilise the system’s 
growth around a ‘most desired’ operating point (e.g. created by an attractor in our 
example of Section 4). To accomplish this, the view of systems’ control has to undergo a 
radical shift to accommodate the paradoxical concept of ‘controlling emerging systems’. 

The traditional view of control engineering is that the controller is a separate entity 
that monitors and affects the main system, generally by the feedback from its output 
variables onto its input variables (Isermann, 1996). In the paradigm shift towards 
emergent engineering, this system/controller pair becomes fragmented into a myriad of 
micro-system/micro-controller pairs (represented in our model as simple agents and their 
individual rules; see also Müller-Schloer and Sick, 2008). Rather than attempting to 
stabilise the whole complex system in a centralised manner, the emergent controller is 
implemented in the form of generic control mechanisms located in every component of 
the complex system. In most typical examples of complex systems, such as pattern 
formation (e.g. Gierer and Meinhardt, 1972), swarm intelligence (e.g. Bonabeau et al., 
1999) or collective motion (e.g. Grégoire and Chaté, 2004), agent rules can be 
decomposed into two parts: a positive feedback that amplifies small local fluctuations in 
the micro-system, and a negative feedback that dampens or corrects the agent’s response, 
and tunes its behaviour more finely (micro-controller). For example, insect colonies 
provide examples of positive feedback (Bonabeau et al., 1999): ants deposit more 
pheromone where there is already enough, and termite brings more pellets of soil where 
there is already a heap of soil. Starting from small initial fluctuations, positive-feedback 
agent behaviour generally creates a single large homogeneous cluster characterised by 
some increasing quantity (concentration, size, etc.). More interesting structures can then 
emerge and be stabilised by adding negative feedback. For example, in collective motion 
(Grégoire and Chaté, 2004), a bird follows the flock by continuously readjusting its speed 
and orientation. Each agent corrects small differences by sensing neighbouring agents, 
and the collectivity converges, albeit temporarily, to a stable trajectory (i.e. the 
appropriate action plan). Thus, at the emergent level, the tendency of positive feedback is 
to create new mesoscopic or macroscopic structures, while negative feedback tends to 
stabilise them (Grobbelaar and Ulieru, 2007). In other words, bottom–up growth is 
guided through positive feedback (implemented in the individual rules of the 
components) while top–down inhibition is regulated by negative feedback (implemented 
through overall CPE system policies), stopping the growth when it goes outside desired 
regions. With this, the fitness measure is dynamically attuned via top–down negative 
feedback to enable the system’s adaptation to sharp and unexpected changes in the 
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environment. These changes, in turn, can only be accommodated by letting the system’s 
components self-organise from the bottom–up, in order to let the system adapt and 
co-evolve with the dynamic environment. 

3.3 Traditional engineering considers complex systems’ emergence as 
an undesirable ‘threat’ 

What traditional engineering fears most is the ability of complex systems to exhibit 
emergence, often assimilated with unwanted behaviour. Surely, goes the quip, one would 
not want an aircraft to become too creative in mid-flight. Typical questions concern how 
we can understand such systems and how we can have confidence in the results being 
produced. Indeed, when starting from such a premise, large collections of autonomously 
interoperating agents do not appear to be the proper way to address future applications at 
first sight. Yet, this reasoning is at odds with the striking properties of homeostasis and 
adaptation reliably displayed again and again by natural systems, from geophysical to 
biological processes – and life itself, which evolved from emergence (Kauffman, 2008). 
Instead of aiming to transform all existing and already well-performing systems 
developed by the solid traditional school into complex systems, emergent engineering 
addresses the yet unmet design needs of the immense range of yet unaddressed 
application domains, mostly CPE or domains where the traditional approach failed 
(CNIP, 2006; Dondossola and Lamquet, 2006; Dunn and Mauer, 2006; IST, 2006; 
SCADA, 2006). 

Taking a closer look at how the internet has evolved into today’s complicated 
network, prone to many pitfalls (Willinger and Doyle, 2002), one notices that the 
classical engineering paradigm has in fact led to a spiral of increasing complexity 
characterised by continuous ‘patching’. The purpose was to suppress unwanted 
sensitivities or vulnerabilities – and thereby increase the system’s robustness – while 
taking advantage of new opportunities for increased productivity, performance or 
throughput. However, the result is far from what we need and is able to achieve from the 
promises of eNetworks as controllers of large-scale, dynamic and continuously evolving 
CPE. This is because classical engineering designers aim for robustness at the design 
stage by seeking to find the right combination of parameter values that keep the system 
under ideal functioning conditions – something impossible to do for emergent complex 
systems. The robustness of complex systems goes far beyond optimal settings of a 
system’s parameters, and reaches deep into their underlying structural properties
that have a major effect on their functionality, dynamics, robustness and fragility 
(Alderson and Doyle, 2009). In response to this need, emergent engineering enables
robustness-by-structure achieved by appropriately designing the interactions among the 
system’s elementary components (EE, 2002). 

Our purpose is to guide the emergent behaviour of large-scale eNetworked CPE in 
such a way that they reach desired performance. These systems can be construed as
‘(eco)systems of systems’ at multiple scales (Ulieru, 2004). They consist of smaller 
module-systems, component-systems, etc., whose individual properties or attributes 
dynamically combine to achieve an emergent desired behaviour at the global synergetic 
level. For such systems, the question is not whether emergence is a good thing or not, but 
rather how to influence a global behaviour that necessarily emerges from the multitude of 
interactions. The essence of the emergent engineering paradigm is ultimately to find ways 
to design the controllers for these large-scale eNetworked systems in order to stabilise 
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their emergent behaviour around desired performance. The whole eNetwork can itself be 
envisioned as a globally evolving controller, managing the performance of a complex 
system to be controlled (Grobbelaar and Ulieru, 2007), for example, to use it to stabilise 
the power grid in case of a blackout or to grow barriers to attacks in a complex crisis and 
emergency management scenario (Ulieru, 2008). 

3.4 Traditional engineering approaches distributed systems design in 
a top–down centralised manner 

The traditional engineering school of thought also induces significant biases when 
it comes to the more recent and ongoing research in multi-agent, service-oriented and 
large-scale distributed systems. To better understand this bias, one can broadly categorise 
the discipline of distributed intelligent systems into two families, which we refer to as 
‘service-oriented agents’ and ‘simple agents’. 

On the one hand, service-oriented agents (e.g. Wooldridge, 2002) come with a huge 
luggage of semantics and reasoning, which makes them ‘intelligent’ individually but 
forces the system developer to design the architecture of their interactions in a 
deterministic manner, and clearly specify each module from top–down (Figure 1(a)). 
Distributed service-oriented systems come from a historical trend in software engineering 
and artificial intelligence that has been gradually replacing big monolithic programmes 
by clean architectural principles based on layers, modules, objects, etc., that communicate 
via application programming interfaces (API) (e.g. Tanenbaum and van Steen, 2002). It 
was realised that disentangling and removing cycles from the graph of function calls 
allows to group functions into code ‘parts’, thereby fixing, upgrading or replacing these 
parts independently from each other, without having to rewrite the rest. Service-oriented 
systems emphasise the role of software agents as proxies representing users or other 
physical entities and their interests (information-searching internet agents, price-bidding 
electronic brokers, device-monitoring automation agents, etc.). Here, agents try to satisfy 
goals under the constraints created by the other agents and their environment. 

On the other hand, the alternative ‘simple-agent’ paradigm is more appropriate to the 
modelling of CPE as complex adaptive systems (CAS) (Levin, 2003) using ABMS 
(Macal and North, 2006). They enable a collective intelligence operating across 
multitudes of components at various scales that interact intensively with each other. CAS 
agents are typically expressed with simpler semantics (Holland, 1998) and are able to 
produce collective intelligence from their interactions. Agent behaviour can be derived 
from statistical models and input information (Newman 2006; North and Macal, 2007). 
Historically, ABMS represents the perspective of social sciences and discrete 
mathematics, rather than engineering. It arose from the need to model systems that were 
too complex for analytical descriptions, such as social interactions and the economy 
(Terranova, 2004). Helped by the rise of computing power, it soon became a practical 
tool in many other scientific disciplines, such as ecology, biology and physics. Most of 
ABMS is based on a combination of three types of topologies (Macal and North, 2006): 
fixed grids such as square pixels, arbitrary networks with long-range connections and 2D 
or 3D Euclidean space supporting irregular lattices of mobile agents with nearest-
neighbour interactions. In contrast to service-oriented multi-agent systems, ABMS rather 
stresses the social interactions among agents towards a collective emergent behaviour 
with a higher purpose that cannot be identified in the behaviour of the individual parts at 
a particular scale of observation. 
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To summarise crudely, the MAS involves a limited number of heavy-weight 
(code-laden), individual, intelligent agents that perform complex functions, while ABMS 
tends to rely on many light-weight (few rules), simpler agents that are highly interactive 
to generate collective intelligence. Emergent engineering explores the links between 
agents and large-scale distributed systems based on simple agents, along the lines of the 
ABMS paradigm. Agent properties must be able to meet the management and 
coordination needs of safety-critical interconnected systems and infrastructures fuelled by 
inexpensive and ubiquitous sensing, communications and computation. Towards this 
goal, emergent engineering proposes to construe agents as ‘simple’, following the 
seminal works of Holland (1998), Kauffman (2000) and the more recent advances in ICT 
eNetworks (Carreras et al., 2007; North and Macal, 2007). CPE technologies are 
envisioned to dramatically evolve over the next years. New properties, issues, 
interdependencies and vulnerabilities will occur that cannot be envisioned today. To 
avoid today’s solutions becoming tomorrow’s problems, a primary requirement for the 
design of eNetworked CPE is to embed now in their fabric the faculty of ‘evolve-ability’ 
mentioned above, that is, the ability of a system to seamlessly accommodate unexpected 
(either gradual or abrupt) changes by developing new characteristics or properties that the 
system did not display previously (Carreras et al., 2007). 

4 An abstract model of self-made network 

In emergent engineering, architecting is done without a global architect. It relies entirely 
on defining the basic cells and the mechanisms by which these cells are able to create 
reliable architectural components. In this part, we present an abstract model of self-made 
network based on this idea. It radically departs from service-oriented architectures, in 
which architectural modules are predefined in a top–down fashion, because it lets 
architectures grow and evolve from the bottom–up interaction between components. We 
offer here a methodological framework for micro-architecting these elementary 
components or ‘cells’, such that they are capable of collectively generating a desired 
behaviour by emergence, and tuning the dynamic adaptation of the CPE to gradual or 
abrupt changes in performance requirements and environmental conditions. In doing so, 
we are seeking generic methods for the design of local interactions that lead, via 
self-organisation, to a global behaviour while guiding the system towards desired 
(yet dynamically adapting and evolving) performance criteria. 

The few sections of this section present a condensed overview of preliminary results 
obtained from a new, original model of autonomous network dynamics. We show a 
model of network development and evolution that is inspired by the biological 
development and evolution of organisms and, in this sense, belongs to a class of artificial 
embryogeny (AE) systems (Bentley and Kumar, 1999; Stanley and Miikkulainen, 2003). 
AE systems are a particular case of evolutionary computation in which the mapping from 
genotype to phenotype is only indirect as it is realised through a complex developmental 
stage. This is also called an evolutionary developmental or ‘evo-devo’ approach. Instead 
of coding directly for macroscopic features of the phenotype (the system), the parameters 
of the genotype code for microscopic features of the cells are coded (the components), 
that is, their abilities to communicate, their propensity for motion and their affinities for 
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assembly with other cells. Like biological cells, nodes in a self-constructing network 
share the same genotype, that is, the same set of rules. Imitating cell division, 
differentiation and self-positioning, a node spawns other nodes, follows its own execution 
path (within the common programme) – which may diverge from its neighbours 
depending on its position – and creates specific links with other nodes according to this 
fate. 

In eNetworked CPEs, nodes can represent human agents who carry personal digital 
assistant (PDA) devices with wireless and peer-to-peer connectivity. The self-assembly 
programme includes routines for the exchange of messages and the dynamical creation or 
removal of links. It relies on a combination of ‘ports’ and internal state variables derived 
from discrete ‘gradients’. Ports and gradients guide the new nodes to specific attachment 
locations in the developing network. As the network expands and node positions change, 
nodes adapt by switching on or off different subsets of the common set of rules – similar 
to gene activation/inhibition in biological DNA – thus triggering the growth of specific 
structures such as chains, lattices and more complicated composite topologies. 

Compared to other AE models, such as L-systems (Siero et al., 1982), the novelty of 
our model resides in the fact that it is both context-dependent (heterogeneous) and 
self-dissimilar (non-repetitive, irregular), and also that it contains microscopic 
randomness (at the level of nodes) while it is reproducible at the macroscopic level 
(of the whole graph, that is, the ‘phenotype’). It extends and generalises the principles of 
pattern formation and collective motion found in morphogenesis from 2D/3D shapes 
(Doursat, 2006, 2008a,b) (Figure 5) to nD-graph topologies. 

4.1 Growing simple chains 

The self-assembling networks envisioned here are composed of dynamical nodes that can 
carry various pairs of attachment ports (X, X ) and corresponding pairs of gradient values 
(x, x ). Ports can be ‘occupied’ (linked to other ports on other nodes) or ‘free’ 
(not linked), while free ports can be ‘open’ (available for connections) or ‘closed’ 
(disabled). Chains are the simplest self-assembling structures that can be realised with 
one pair of ports in each node (Figure 2(a)–(c)). New nodes that just arrived in the 
system’s space or nodes that are not yet connected, have both ports open and gradients set 
to 0. A node i can create a link with another node j only through a pair of complementary 
open ports, here X and X , with one link per port. As soon as a new link is made, ports are 
occupied and gradients are immediately updated according to the following rules: 

1 a free port always maintains its value at 0 (gradient source) 

2 x is sent out through port X  to port X of the neighbour node with an increment of +1 
(resp. x , X, X ).

Discrete counter increments are also the method of choice for spreading positional 
information in amorphous and spatial computing systems (e.g. Doursat, 2008b; 
Nagpal, 2002). 
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Figure 2 Dynamical and evolvable self-assembly of a network based on programmable nodes. 
Occupied and closed ports are displayed in light colours, while open ports are displayed 
in dark colours (see online version for colours) 

The purpose of the gradient counters (x, x ) is to keep track of the nodes’ positions in the 
chain. This allows, for example, to build chains of a fixed length n by closing ports as 
soon as x + x’ = n  1. It can also create more complicated structures by switching on or 
off certain attachment rules when certain gradient values have been reached. All nodes 
carry the same programme (their genotype or ‘DNA’), which consists of three main 
routines: gradient update (G), port management (P) and link creation (L). The gradient 
update routine G is the generic code that provides nodes with the positional information 
(x, x ) that they need to make further decisions (see propagation and increment rules 
1 and 2 above). The port management routine P (illustrated in Figure 2(g)) contains the 
heart of the logic (the genotype) specific to the construction of a target structure 
(the phenotype). Routines G and P are executed by the nodes already involved in the 
network, and prepare the way for new nodes to execute L. Link creation routine L
provides the generic logic that prompts new nodes to pick one of the open ports of the 
network at random to make a new connection. 

4.2 Creating modular structures with different gradients 

More complicated structures can be developed by composing multiple chains in 
branching arrangements (Figure 2(d)–(f)). To allow the creation of modules with their 
own identities and local positional information, one can find again inspiration from 
biology, in particular the concepts of modularity and homology so central in evo-devo 
(Callebaut and Rasskin-Gutman, 2005). Modules are similar to ‘limbs’ that have distinct 
morphologies and geographies. This is modelled here by different coordinate systems 
based on tags a, b, c, etc. Gradient ports in one part of the system, for example, a chain, 
are denoted by (Xa, X a), while ports in other branches will be (Xb, X b), (Xc, X c), etc. 
Accordingly, routine L is amended so that links cannot be created between ports with 
different tags. 
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In the simple scenario of Figure 2, only the X a port is open in the beginning 
(Figure 2(a) and (b)). When the third node has attached, another pair of ports (Xb, X b) is 
created on that node and only port X b stays open (Figure 2(c)). Note that this particular 
event is triggered by the positional information carried by the node: in this example, the P
routine (Figure 2(g)) stipulates that when xa = 2, a node must differentiate into a 
bifurcation node, that is, create another pair of ports and their corresponding gradient 
variables. After this event, new nodes can attach to either open port, X a or X b

(Figure 2(d)), that is, either choose to first augment the original chain or its branch. 
However, the order of node attachment will not modify the final structure. New nodes 
carry an untagged pair of ports (X, X ) and acquire the tag of their first contact. The same 
‘stop-rule’ of chains applies here when the b branch reaches length nb = 3, that is,
xb + x b = 2, closing the only open port X b (Figure 2(e)). Independently, another branch c
grows from the fifth node of chain a and stops at nc = 4 nodes, while chain a stops at 
na = 6 nodes. 

4.3 Cluster nodes 

In biological development, the position and number of individual cells is very imprecise, 
while the structures and organs they form are reliably placed. Similarly, programmed 
network self-assembly could also be irregular at the microscopic level of the nodes, while 
retaining an orderly arrangement at the higher, ‘mesoscopic’ levels of clusters of nodes. 
This property of variability of an emerging structure, in addition to its fundamental 
programmability, is embodied here by replacing single nodes with clusters (Figure 3). 
This is done through a special port, C (as in ‘cluster’ or ‘clique’) that allows multiple 
nodes with identical gradient coordinates to form random connections with each other. 
The C port represents an extra ‘non-linear’ dimension added to the pairs of ports (Xa, X a), 
(Xb, X b), etc., of any composite structure. Another new feature is that nodes are also 
allowed to make multiple connections per port, whether X or C. Thus, in the case of a 
chain, a new node has two possibilities of attachment: it can either thicken or lengthen the 
chain. It either connects to an existing node through C, in which case it inherits the 
coordinates of that node’s cluster, or it connects as before via X or X  ports, in which case 
it pioneers the creation of a new cluster at one end of the chain and all coordinates are 
updated according to the usual gradient dynamics. After their first link, new nodes may 
also establish a few supplementary connections through any of their ports, under the 
constraint of coordinate consistency ( 1 and +1 via ports X or X , equal coordinates via 
port C).

Similar to cellular proliferation in morphogenetic tissues and organs, this proliferation 
of nodes in structured networks introduces redundancy and ‘failover’ safety. Unlike 
single-node chains, the failure of one link in a cluster chain does not imply the failure of 
the whole structure. Yet, while relying on a fluctuating swarm of agents for its 
robustness, the overall topology of a programmed network is still not left to chance but 
narrowly guided by the genotype of the attachment rules G, P and L to grow the desired 
structures. 
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Figure 3 Programmable network topologies, in which the main nodes are in fact composed of 
clusters of randomly connected sub-nodes. These topologies exhibit both randomness 
at the microscopic level and precision and reproducibility at the macroscopic level 
(see online version for colours) 

4.4 Further guidelines towards concrete applications 
The emergent engineering process described above defines components and their 
interactions, but the primary challenge is to ensure that the design produces a desired 
global functionality. The previous section presented abstract mechanisms of self-made 
networks that have a purely endogenous (i.e. bottom–up) ability to form precise 
configurations. It established new foundations for the emergence of non-random, 
programmable patterns exhibiting intrinsic structures that are neither repetitive nor 
imposed by the environment. Starting from these premises, in order to make it applicable 
to concrete problems, we aim to complete the model with the following features: physical 
space, developmental adaptation to a dynamic environment, agent functionality, and 
hierarchical command and control. 
Physical space: as mentioned in the Introduction section, most real-world eNetworks 
combine, to a certain extent, non-spatial graph topologies (e.g. connecting organisations 
and entities) with Euclidean graph topologies (e.g. connecting people and equipment on 
the field). The abstract mechanisms of programmed attachment described in Section 4 
create purely non-spatial graphs that are displayed in 2D figures only for convenient 
viewing. Space can then intervene at two levels: by limiting the scope of pre-attachment 
detection (nodes can connect only to nearby nodes, within a certain radius), and by giving 
a mechanical meaning to the nodes and links. 
Developmental adaptation to a dynamic environment: most importantly, as it is a 
recurrent theme of this paper, the propensity to create specific network morphologies by 
programming the nodes must also be influenced and modified by the environment in 
which those formations will function. In Sections 4.1–4.3, node attachment was based on 
port availability driven only by positional gradient values. This internal dynamics must 
now interact with the external dynamics of the system’s context, via the physical space of 
the environment, along with all its possible boundary conditions and events occurring 
unexpectedly. Environmental landmarks can play different roles in the self-structuring 
process, acting as triggers, attractors or obstacles. Figure 4 gives an example of numerical 
simulations of self-organised network morphologies – in which nodes execute a program 
similar to that of Figure 2 – that exhibits a high degree of adaptation to environmental 
constraints, such as spatial boundary conditions. Each network is based on the same node 
program (genotype), yet grows differently (‘polymorphism’ of the phenotype) as it senses 
its environment. 
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Figure 4 This numerical simulation of self-organised network morphologies – in which nodes 
execute a program similar to that of Figure 2 – shows that they can exhibit a high 
degree of adaptation to environmental constraints, such as spatial boundary conditions. 
Each network is based on the same node program (genotype), yet grows differently 
(‘polymorphism’ of the phenotype) as it senses its environment (e.g. via an anti-
collision rule between the nodes and the red walls) (see online version for colours) 

Agent functionality: another important aspect not included in the abstract model is the 
diversity of functional roles that agents may take on, in addition to their self-assembly 
capabilities. The model should also mix various predefined agent identities before they 
even further differentiate by gradient position inside the structure. This natural 
heterogeneity of agents could be reflected in the model by a heterogeneity of ports and 
gradients, and diversified attachment rules that depend on agent types. This would result 
in various subnetworks of two kinds: ‘intra-category’ subnetworks linking agents of the 
same expertise, and ‘inter-category’ subnetworks combining agents of different expertise 
together. 

Hierarchical command and control: finally, as discussed in the Introduction section, the 
adequacy or ‘fitness’ of the deployed eNetwork to a specific situation, both in its 
structure and function, might also depend on a two-way communication between 
the agents and a remaining central supervision. Some CPE cannot exclusively rely on 
peer-to-peer self-organisation at the local level, and might still need (minimal) 
monitoring and orchestration at the global level. In this framework, dynamical adaptation 
to an evolving environment basically can happen at two levels: 

1 quick adaptation to local circumstances at the level of the agents under the same 
rules of deployment

2 major changes of strategy at the command level that change the rules of deployment.
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Figure 5 Genotype and phenotype in artificial embryogeny (see online version for colours) 

Source: Doursat (2006, 2008a,b). 

High-level command and control action plans would set only the global course of the 
action, while the low-level implementation details are carried out by individual agent 
protocols (e.g. real-time positioning). Action plans are compiled down into local rules of 
attachment and broadcasted to all agents. Thus, the network can adapt to new incidents 
and episodes of an evolving situation by reprogramming the agents on the fly to create 
new formations. 

In summary, future work can expand the abstract algorithmic rules (gradient update 
G, port management P and link creation L) to take into account spatial extension, external 
events, agent diversity and hierarchical command. By implementing these four 
principles – in addition to intrinsic self-connectivity – self-organised and structured 
eNetworks could become truly functional and evolvable. This dynamical process would 
be continuously adjusting to the environment’s dynamics, including its unexpected new 
events and effects. The effectiveness of an eNetwork would depend on how its genotype 
is designed (i.e. how individual roles are specified through protocols) in such a way as to 
obtain maximal synergy under the overarching constraints imposed by the phenotype 
(reflected in network policies; Figure 5). It is this continuous ‘balancing act’ between 
individual agent autonomy and overall goals (previously explored in holonic enterprises) 
that would enable the emergence of effective structures, which grows when and where 
needed, to face unexpected developing events. This could ensure a continuous adaptation 
and co-evolution with an environmental dynamics by making an eNetwork CPE (as the 
controller) ‘weave itself’ into the situation to control like a nervous system, growing new 
connections and ‘nerves’ around important events and locations (Ulieru, 2008). 

5 Emergent engineering 

5.1 The paradigm shift in a nutshell 

To ensure stability and predictability as major desirable systems characteristics, classical 
engineering often strives to eliminate self-organisation and emergent processes in favour 
of reductive piece-by-piece design, characteristic of the way complicated rather than 
complex systems arise (Alderson and Doyle, 2009). By contrast, the structure of a 
complex system (Bar-Yam, 2003) is not the result of a historic design process, but a 
contingent process of evolution (Kicinger, 2004). The primary difference is that systems 
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designed through the classical engineering process are expected to perform foreseeable 
tasks in a bounded environment, whereas complex systems, either natural (living 
organisms, insect colonies, ecosystems) or man-made large-scale CPE (communication 
networks, transportation networks, cities, societies, markets, multinational corporations; 
Terranova, 2004) are expected to function in complex, open environments with 
unforeseeable contingencies. This requires high adaptability by which the system can 
evolve novel configurations emerging from clustering its components in new ways. 

Optimality and performance: just as traditional engineering seeks optimal solutions, 
emergent engineering must seek ‘optimal’ configuration spaces, where near-optimal 
configurations for an infinite number of as-yet unforeseen circumstances are numerously 
implicit (Doyle and Csete, 2007). The promise of emergent engineering is, therefore, one 
of open-ended discovery of new system configurations that can respond to unforeseeable 
changes, rather than predetermined performance targeted at static environmental 
conditions. 

Utility: in the classical paradigm, utility is assured by the explicit design and testing of 
the processes that produce the desired functionality and the pathway from component 
behaviour to system behaviour is clear. This is not the case of engineered complex 
systems where, by definition, system functionality is emergent and too complex to be 
described explicitly in terms of component behaviour. New behaviour evolves from the 
components’ interactions, and utility is measured by the degree to which the new 
behaviour reflects an adequate system adaptation to the environmental changes. 

Performance metrics: implicit in most work (Minai et al., 2006) is the notion 
that complex systems should be judged on their meta-attributes such as robustness 
(Alderson and Doyle, 2009), evolvability (Carreras et al., 2007), adaptability, scalability 
(Ulieru, 2004), etc., rather than on narrowly defined tasks. However, defining and 
measuring these properties is still far from being an exact science. Current methods for 
evaluating engineered systems encompass rigidly specified criteria with well-defined 
‘correct performance’, while we are still lacking metrics to assess the meta-attributes that 
make a complex system worth its competitive advantages. 

Evolution vs. evolvability: traditionally, in engineering, evolutionary methods have been 
considered to be just another optimisation technique, in which human designers create the 
meta-process of problem specification and interpretation, such as defining a ‘fitness 
function’ as a measure of how well the system has improved through evolution. The 
evolution of large complex systems (called ‘evolvability’ by Carreras et al., 2007) takes 
place primarily in their functional environment in which, by enabling the system to adapt 
to real-world tasks through changes in components and their interactions over time, the 
system creates new configurations to address abrupt change. Doing so, it evolves new 
behaviour that was simply not displayed or impossible to display before. In this way, 
‘evolvability’ can encompass ‘evolution’ because it can create behaviour that would not 
have been possible before the dramatic adaptation that the system had undergone. Yet, 
evolvability can be more relaxed and enables the system to only manifest properties that 
it had but never used, and ‘experience itself’ through behaviours that were possible but it 
did not have the opportunity to display before. Due to the particular traits of systems that 
exhibit emergent behaviour, it is not easy to point to an exact boundary between 
evolution and adaptation, especially in the case where the system never exhibited certain 
behaviours, although they were in the plethora of possibilities. What we consider 
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important is to distinguish between lean adaptation and sharp adjustment of the system’s 
behaviour to accommodate abrupt change – which can also lead to permanent mutation 
(‘true evolution’). 

Robustness: classical engineering designers seek to find the right combination of 
parameter values that keep the system under ideal functioning conditions – something 
impossible to do for emergent complex systems. The robustness of complex systems goes 
far beyond optimal settings of a system’s parameters, and reaches deep into their 
underlying structural properties that have a major effect on their functionality, dynamics, 
robustness and fragility (Alderson and Doyle, 2009). In response to this need, emergent 
engineering enables robustness-by-structure achieved by appropriately designing the
interactions among the system’s elementary components. 

In summary, eNetworked CPE can be modelled as CAS using the ABMS paradigm to 
build a collective intelligence, operating across a multitude of components at various 
scales that interact intensively with each other. Since CAS agents are relatively simple in 
their semantics, like cells in natural organisms, the system’s intelligence results from 
their collective interactions. Most surprisingly, our deepened understanding of genomics 
and molecular biology (Kauffman, 2008) has revealed that, at the network and protocol 
level, cells and organisms are strikingly similar to technological networks, despite having 
completely different material substrates, construction and evolution dynamics (Doursat, 
2008a,b; Doyle and Csete, 2007). Biological agents (cells) carry a set of rules (DNA) that 
endows them with a repertoire of non-trivial behaviours. Methods to reintroduce a certain 
dosage of programmability inside free self-organisation, in the form of a developmental 
genotype (Figure 5) are explored in the field of artificial development (Bentley and 
Kumar, 1999; Doursat, 2006, 2008a,b) and amorphous computing (Abelson et al., 1999; 
Nagpal, 2002). The global behaviour is specified in terms of primitive behaviours at the 
agent level and this ‘programme’ is then ‘compiled’ into a common behavioural 
specification for all agents, ensuring the emergence of the desired global effect. To date, 
there is no unified ‘complex systems science’ or agreed-upon ‘complexity theory’. No 
central dogma or modern synthesis has yet happened for complex systems, as it has for 
biology. However, a great diversity of related topics and disciplines coexist, and a vast 
array of mathematical and computational tools were recently proposed (Minai et al., 
2006; Newman, 2006). We aim to look at the commonalities across these domains in 
search for the generic principles of emergent engineering. 

5.2 Principles of emergent engineering 

From the above considerations, we can envision the following generic principles of 
emergent engineering: 

Architecting from the bottom–up without an architect: a closer look at complex systems 
(biological or techno–social) reveals that they all consist of a large number of agents,
which follow a set of micro-instructions or rules on how to search and connect to 
other agents, interact with them over these connections, change one’s internal state 
and carry out some specialised function. The rules act upon an array of internal 
variables – developmental (dedicated to building the system) and functional (dedicated to 
making the system carry out tasks). The rules can also be modulated by parameters that 
may evolve over time, according to a global fitness that the system is exhibiting with 
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respect to its function in the environment. By analogy to biology, our approach considers 
genetic-like regulation at the agent level to harness large-scale eNetworked CPE. 
Ultimately, the quest of emergent engineering is to define the blueprint (the DNA 
structure) of a ‘cell’ in such a way that architectural components collectively emerge and 
the eNetwork grows CPE with desired characteristics. 

Control without a controller: Using the eNetwork to control large-scale CPE: the 
traditional view of control engineering is that the controller is a separate entity that 
monitors and affects the main system, generally by feedback from its output variables 
onto its input variables. It is extremely hard, if not impossible, to control a large-scale 
eNetworked CPE by building a global-logic, top–down system able to rapidly adapt to 
changes adequately if each element needs to be instructed about what to do at each step. 
In the paradigm shift towards emergent engineering, this system/controller pair becomes 
fragmented into a myriad of micro-system/micro-controller pairs, where a micro-system 
is a ‘cell’ and its micro-controller is the subset of rules responsible for stabilising its 
behaviour. Agent rules can be decomposed into two parts: 

1 a positive feedback that amplifies small local fluctuations (micro-system) 

2 a negative feedback that dampens or corrects the agent’s response, and tunes its 
behaviour more finely (micro-controller). 

At the emergent level, the tendency of the former is to create new macroscopic 
structures, while the latter tends to stabilise them. Emergent engineering aims at a 
methodology to evolve the micro-controller in individual cells, such that eNetworked 
CPE can deploy emergent desired functionalities. 

Thus, the emergent engineering paradigm opens perspectives on how strategies that 
mimic natural adaptation of highly evolved robust systems can be developed with simple 
agents: “When one gets a collective behaviour from the bottom-up individual interactions 
of a multitude of elements, adaptation of the large scale system to unexpected disturbance 
comes naturally, and only in regions where it is needed” (Levin, 2003). 

Co-evolving the CPE with the environmental dynamics: once the basic ‘eNetwork DNA’ 
parameters have been set to achieve the CPE growth (architecture) and function (control), 
the remaining question is how to make the CPE co-evolve with the environmental 
dynamics. After reaching structural maturation on a short deployment time scale, the 
eNetworked CPE should switch the bulk of its activity from executing the developmental
part of its genotype (Figures 2(g) and 5) (dynamic architecting, which positions the 
actors within the network so that they can best perform their activity in coalitions or 
teams) to executing the functional part of its genotype (adaptive control obtained by 
executing their roles within the teams to realise the most effective action plans). This can 
be done by specifying how the genotype (individual agent rules) may vary and how the 
phenotype (overall CPE network policies that enable the selection of appropriate 
behaviour) may be selected. The challenge of emergent engineering is to deliver a 
method to balance the genotype (developmental) and phenotype (functional) parts 
(Figure 5). 
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6 Conclusions 

In response to the need to manage the complexity of large-scale eNetworked CPE, we 
proposed a breakthrough in the design of resilient and efficient complex distributed 
systems that could affect many disciplines in the next decades by radically rethinking 
systems engineering. Emergent engineering attempts to put natural and engineering 
complex systems within the same discipline – closing the loop between complex systems 
science and complex systems engineering. In this paradigm, the study of natural complex 
systems leads to better methods for complex engineered systems while experience with 
building and manipulating complex engineered systems enhances the understanding of 
how natural complex systems function. This research will open the door to new 
inventions enabling the development of solutions crucial for the orderly functioning of 
society and the economy (EE, 2002). Examples can be found in the resilient deployment 
of interdependent critical infrastructures and blackout-free optimised power grid, holistic 
security ecosystems, hazard-free transportation (automotive networks for aerospace and 
avionics), network-enabled operations (Dorn, 2007), emerging architectures of 
participation by peer production in organising work, etc. Evolve-able, resilient and 
efficient CPE unleash a great potential for the seamless integration of yet unthinkable 
technologies within the fabric of our Planet – thus creating an open environment for 
far-reaching continuous societal, economic, industrial and technologically sustainable 
growth. CPE will accommodate both gradual and disruptive developments, whose 
influence on our lives cannot be fully grasped today, such as the threat of climate change. 
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Notes 
1For previous works of the authors, on which this paper builds further, please refer to their 

websites. 
2Complexity here is regarded as a collective behaviour resulting from interaction between parts, 

which cannot be anticipated because it is not implicitly contained in the behaviour of the 
individual parts at a particular scale of observation. Emerging properties of the collective 
behaviour are novel with respect to the individual parts of the system (Holland, 1998). 
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