

 Int. J. Autonomous and Adaptive Communications Systems, Vol. 4, No. 1, 2011 39

 Copyright © 2011 Inderscience Enterprises Ltd.

Emergent engineering: a radical paradigm shift

Mihaela Ulieru*
Adaptive Risk Management (ARM) Laboratory,
Faculty of Computer Science,
University of New Brunswick,
P.O. Box 4400,
Fredericton, NB E3B 5A3, Canada
E-mail: ulieru@unb.ca
*Corresponding author

René Doursat
Institut des Systèmes Complexes,
CNRS and CREA,
Ecole Polytechnique,
57–59, rue Lhomond,
Paris 75005, France
E-mail: rene.doursat@polytechnique.edu

Abstract: We shed light on the disruptive advances brought by the ubiquity of
computing and communication environments, which link devices and people in
unprecedented ways into a new kind of techno–social systems and
infrastructures recently named ‘cyber-physical ecosystems’ (CPE). While
pointing to fundamental biases that prevent the traditional engineering school
of thought from coping with the magnitude in scale and complexity of these
new technological developments, we attempt to lay out the foundation for a
new way of thinking about systems design, referred to as emergent
engineering. One major characteristic of CPE is that, given their very nature,
they cannot be a priori defined but rather emerge from the interactions among a
myriad of elementary components. We show how this emergence can be guided
by balancing positive and negative feedback, which tunes the growth of new
configurations and adapts the system to sharp and unexpected changes. Rather
than attempting to design the system as a whole, the components of the system
are endowed with capabilities of dynamic self-assembly, disassembly and
re-assembly to enable ‘evolve-ability’. As paradoxical as it may seem to the
classically trained systems engineer, this new attitude of the designer as an
‘enabler’ (vs. ‘dictator’ of a system’s blueprint) allows the system to seamlessly
adapt its development and evolve to meet dynamic goals and unexpected
situations in an anticipative manner – an impossible feat under the traditional
approach. To the extent that it produces new functionality, the proposed
method enables a system to evolve via its ability of pervasive adaptation.
Emergent engineering lies at a boundary where theoretical discovery meets
systems engineering, computing and communications into a new convergent
science of complex systems design. It currently transforms systems and
software engineering by embracing various highly interdisciplinary
perspectives.

Keywords: complex systems; emergent engineering; emergence and
self-organisation; CPE; cyber-physical ecosystems; developmental biology;
co-evolution.

 40 M. Ulieru and R. Doursat

Reference to this paper should be made as follows: Ulieru, M. and Doursat, R.
(2011) ‘Emergent engineering: a radical paradigm shift’, Int. J. Autonomous
and Adaptive Communications Systems, Vol. 4, No. 1, pp.39–60.

Biographical notes: Mihaela Ulieru is the Canada Research Chair in Adaptive
Information Infrastructures for the eSociety and Director of the Adaptive Risk
Management Lab, conducting research in complex networks as control
paradigm for complex systems at the University of New Brunswick. She
currently champions the area of emergent engineering and its application to
emergency response management and networked enabled operations. She is the
founder and leader of several international research consortia, and was
appointed on several national and international advisory boards and review
panels, among which the Scientific Council of the EU, NCE Intelligent
Manufacturing (I*PROMS), the EU FP7 Proactive Initiative on Pervasive
Adaptation (PERADA), Australia’s Digital Ecosystems and Business
Intelligence Institute, and Singapore A*STAR. In 2007, she was appointed by
the Minister of Industry as a member of the Government of Canada’s Science
Technology and Innovation Council.

René Doursat is Director of the Complex Systems Institute, Paris Ile-de-France
(ISC-PIF) and Full Member of CREA, the research centre in cognitive science
and self-organisation at the Ecole Polytechnique, Paris. Previously, he was a
Visiting Assistant Professor in computer science at the University of Nevada,
Reno. An alumnus of the Ecole Normale Supérieure, Paris, he came back to
academia full-time in 2004, after a segue through San Francisco Bay Area’s
software industry. His research activities address the computational modelling
and simulation of swarm multi-agent systems aimed at a new form of
engineering inspired by biological and social complexity – in particular the
emergence, dynamics and evolution of heterogeneous architectures. He is the
Principal Organiser of the French Complex Systems Summer School in Paris
and several international workshops in complex systems science and
engineering. He is an Associate Editor of IEEE Transactions on Neural
Networks, and an expert reviewer or advisor for several journals, grant
agencies, award juries and curriculum committees.

1 Introduction

Information and communication technologies (ICT) pervading everyday objects and
infrastructures, the future ‘Internet of Things’ (ITU Internet Reports, 2005) is envisioned
to undergo a radical transformation from today’s mere communication highway into a
vast hybrid network seamlessly integrating physical, mobile and static systems to power,
control or operate virtually any device, appliance or system/infrastructure. Manipulating
the physical world will occur locally, but control and observability will be enabled safely
and securely across an overlay network that we broadly refer to as an ‘eNetwork’. Such
eNetworks will enable the spontaneous creation of collaborative societies of otherwise
separate artefacts, referred to as ‘cyber-physical ecosystems’ (CPE).1 Their examples
range from self-reconfiguring manufacturing plants (Ulieru, 2004) and self-stabilising
energy grids to self-deploying emergency taskforces, all relying on a myriad of mobile
devices, software agents and human users that would build their own eNetwork on the
sole basis of local rules and peer-to-peer communication (Dressler, 2007). In such
‘opportunistic ecosystems’ (herewith referred to as eNetworked CPE) that will make the

 Emergent engineering: a radical paradigm shift 41

Internet of Things, distributed systems at various levels of resolution, ranging from single
devices to spaces, departments and enterprises, are brought together into a larger and
more complex ‘system of systems’, in which the individual properties or attributes of
single systems are dynamically combined to achieve an emergent desired behaviour of
the synergetic ecosystem.

The dramatic progress of CPE technologies is envisioned to reach unanticipated
levels of complexity, beyond the boundaries of the disciplines that conceived their
components (CPS, 2008). This challenges the traditional engineering school of thought in
disruptive ways, given that, by their very nature, CPE cannot be a priori defined, but
rather emerge from the interactions between individual systems’ (and people’s),
interactions facilitated by the eNetworks. This requires to drastically revise the traditional
top–down perspective on system design and control, which aimed at imposing order
exogenously, telling each element of the system what to do at every step through
predetermined strategies, and assuming that all possible situations the system might
confront are knowledgeable in advance. Instead of fighting it, eNetworked CPE could be
managed by ‘riding the wave’ of their own complexity and rather let systems grow,
function and stabilise – even adapt and improve – endogenously, in a ‘bottom–up’
fashion.

2 Towards a new way of thinking about systems design

We address the radical shift of paradigm in systems and software engineering caused by
the irruption of ubiquitous computing and communication environments. The accelerated
expansion of eNetworks, tightly linking systems and people in unprecedented ways, has
enabled a spontaneous and uncontrolled ‘bottom–up’ emergence of hyper-distributed
CPE. Machines, critical infrastructures, softwares and users are now blended at a
magnitude and level of complexity that exceeds the traditional ‘top–down’ engineering
mindset. This has puzzled systems and software engineers for some time now and started
a worldwide revolution (IT Revolutions, 2008) that aims at a new way of thinking about
such complex systems. The new quest is to find appropriate methods to manage the
magnitude of scale and complexity of large CPE.

One major characteristic of large interdependent CPE is that, by their very nature,
they cannot be a priori defined but rather emerge from the interactions between
individual machines and people, facilitated by eNetworked communication. Recent
attempts to understand and handle these new types of networks point to an alternative
school of thought in systems and software engineering, questioning the main stream in
disruptive ways. Instead of defining the system and its performance requirements in
advance, following a top–down hierarchical thinking (Figure 1(a), inspired by Carreras
et al., 2009), the engineer must rather act as a facilitator to support and guide the
complex system through its process of ‘self-design’, which generates organisational
structure from the bottom–up interactions among a myriad of elementary components
(Figure 1(b)). As paradoxical as it may seem to the classically trained systems engineer,
this new attitude of the engineer as enabler (vs. ‘dictator’ of a system’s blueprint) allows
the system to seamlessly adapt its development and evolve to meet dynamic goals and
unexpected situations in an anticipative manner – an impossible feat under the traditional
approach.

 42 M. Ulieru and R. Doursat

Figure 1 The radical shift in design paradigm: (a) top–down design and (b) bottom–up ‘design by
emergence’ (see online version for colours)

Building on these trends, time is ripe to capitalise on the recent advances in systems
engineering, computing and communications, and develop a new, convergent science of
complex systems design. The significant difficulty of this pursuit is that it lies at the
junction between multiple disciplines: engineering (dynamical systems and control),
communications (networks), computer science (agent-based modelling and simulation
(ABMS)), physics (statistical mechanics) and biology (self-organisation in
morphogenesis, homeostasis and evolution). We need to continue building upon the latest
paradigms, through which the new school of thought is currently transforming systems
and software engineering, towards a global approach embracing various perspectives
from all the above disciplines. We propose to call this unified theoretical effort emergent
engineering.

One major mandate of the new school of thought is to formulate and define the
concepts of emergent engineering from this radically new, interdisciplinary perspective,
as suggested in Lee (2007):

“Today’s computing and networking technologies, however, may have
properties that unnecessarily impede progress towards these
applications Many of these applications may not be achievable without
substantial changes in the core abstractions To realize the full potential of
Cyber-Physical Systems, we will have to rebuild computing and networking
abstractions. These abstractions will have to embrace physical dynamics and
computation in a unified way”.

This new school of thought encompasses trends in computing and communications as
well as networks. In this paper, we attempt to lay out the basis for new concepts and
abstractions able to contribute to the development of emergent engineering. Using the
paradigms of complexity science, we rephrase the classical concepts of engineering
design and systems control respectively, in terms of developmental emergence,
adaptation and evolvability found in natural systems to propose a breakthrough approach
to the architecting and control of future eNetworked CPE. We proceed by identifying and

 Emergent engineering: a radical paradigm shift 43

responding to several fundamental biases of traditional engineering in Section 3, and
illustrate these new abstractions on a model of self-made network that we propose in
Section 4.

3 Fundamental biases carried on from the traditional engineering school

3.1 Traditional engineering requires a system to be well defined

Generally, engineering is about the design of bounded, static systems that can be clearly
and completely defined around specific operating points or regions. As systems that
continuously adapt and evolve in spontaneous, uncontrollable dynamics, eNetworked
CPE cannot be predefined by the designer, be well defined itself. What characterises such
large-scale complex systems with unpredictable dynamics is that non-trivial, large-scale
order can be produced by simple processes involving interactions operating locally on
simple agents or components. For such systems – termed emergent holarchies in Ulieru
(2004) – ‘becoming’ is ‘being’ (Minai et al., 2006). This stands in sharp contrast to the
classical paradigm in engineering with its clear distinction between the design and
production phase, on the one hand, and the functional phase, on the other hand. Even
systems usually considered to be ‘adaptive’ (such as adaptive controllers or neural
networks) follow this two-phase paradigm, allowing adaptation only in the superficial
sense of parameter adjustment – whereas complex systems change not only their
parameters but also their fundamental structures and processes. This is the essence of the
paradigm shift followed by the new school of thought, and the motivation of our work.
As stated in Carreras et al. (2007), Lee (2007), and Alderson and Doyle (2009), we need
to design for emergence, that is, for systems that fundamentally and continually adapt and
evolve.

As both a system and an evolving concept at the same time, ‘evolution’ for
eNetworked CPE should not only be construed as a method to optimise the system but
more importantly as an intrinsic property of the system to be designed (Carreras et al.,
2007). Most of complex systems engineering research has focused so far on specific
domains such as multi-agent systems (Ulieru, 2004), collective robotics and swarms
(Gross et al., 2006), and networks (Newman, 2006). However, clues towards a general
strategy come from the latest insights into developmental biology (Kauffman, 2008),
where evolution’s profound success is supported by the meta-attribute of evolvability as
the ability of the configuration space (in this case, the space of genotypes or phenotypes)
to produce an endless supply of viable configurations with remarkably few obvious dead
ends. Emergent engineering promotes ‘evolve-ability’ (as per Carreras et al., 2007) as a
new paradigm for designing systems capable of evolving towards dynamically changing
goals by continuously adapting to unexpected situations without human intervention
(Marzano and Aarts, 2003).

Another fundamental insight provided by emergent engineering is that highly complex
functional systems2 can only arise through evolutionary processes of selection in the
context of actual tasks. This fundamentally contrasts with ongoing efforts to design large
real-time response systems through specification followed by implementation, which is
still the case of even today’s distributed systems, applications and techniques involved in
multi-agent systems, service-oriented architectures or Web 2.0 and semantic Web – a
lingering problem that, for example, ‘organic computing’ is also trying to address

 44 M. Ulieru and R. Doursat

(Würtz, 2008). Typically, these approaches stem from the traditional top–down design,
which ‘hardwires’ adaptability into the system’s blueprint. The blueprint is being while
designed in a top–down fashion, thus is fixed, impossible to adapt or change itself
(Carreras et al., 2007), designers assume a fixed set of scenarios, decide on a limited
range of operating conditions and then build a system that is optimised (in terms of
performance) for the chosen applications. Moving farther away from direct design and
from the system’s profuse details, emergent engineering (EE, 2002), looks rather for the
generic conditions that will produce those details without dictating them, through a
process of developmental and evolutionary ‘meta-design’.

As we will attempt to demonstrate through our model in Section 4, emergent
engineering endows a CPE with an ability to evolve through a bottom–up design-by-
emergence approach. Our approach suggests that, rather than attempting to carefully
define the system as a whole, efforts should be invested in carefully designing the
components of the system and endow them with capabilities of dynamic self-assembly,
disassembly, and re-assembly, in order to enable ‘evolve-ability’. Thus, rather than
improving the design of a given architecture, the new challenge is to create the premises
that can support the self-design of a whole family of possible architectures, guided
by their intrinsic assembly laws and the extrinsic environmental conditions. As in a
jigsaw-puzzle metaphor of system assembly, a component represents a piece of the
puzzle, while its binding affinities with other components are embodied in the ‘shape’ of
this piece. At any instant, the system-puzzle finds itself in a certain state, corresponding
to a particular compatible arrangement of its pieces. Complex self-assembling systems
are multifaceted puzzles: the fit between components is approximate or flexible;
component shapes are not unique, allowing for many permutations and equivalent
binding configurations; and no one moves the pieces. Rather, old bindings undo
themselves and new ones appear, thus seamlessly reconfiguring the system as a function
of the ever-evolving environmental circumstances.

The proposed paradigm shift fundamentally challenges the structured and predefined
design paradigm of traditional engineering, which envisions each piece as having a
predetermined place and functionality in the overall system, crafted for a predetermined
scope. Although this radical shift in systems thinking (Boardman and Sauser, 2007)
brings unease to the mainstream engineering community at large, it is so far the only path
to approach system design for the large-scale eNetworked CPE that are about to shape
our world’s trajectory in unprecedented ways (IT Revolutions, 2008). Emergent
engineering enables the creation of new dynamics of large-scale systems and
infrastructures, as well as new methods for managing the complex dynamics of
unpredictable complex situations (EE, 2002).

3.2 Traditional engineering requires a system’s performance to be specified

Traditional engineering design relies upon a clear definition of the system’s performance
based on the assumption that the system is itself clearly definable. In that context, new
and surprising behaviour is construed as anything that falls outside of the system’s known
or predetermined behaviour and regarded as highly undesirable. Designers assume and
predict a finite and fixed set of scenarios, decide on a limited range of operating
conditions and then build a system that is optimised (in terms of performance) for the
chosen applications (Carreras et al., 2007).

 Emergent engineering: a radical paradigm shift 45

However, as much as one would want, it is not possible to predefine performance
criteria for an evolving complex system exhibiting unpredictable emergent behaviour that
defies cause-effect behaviour. Here, the performance is rather measured by the ability of
the system to adapt and accommodate sharp (internal or external) disturbances and
dramatically changing operating conditions, while maintaining functionality. Emergent
engineering suggests an innovative and original way to address this very difficult
problem, namely by regarding performance as an emergent property of the adaptive
system and designing a controller capable to co-evolve with the adaptive system to
seamlessly accommodate such sharp changes in the emergent system behaviour. The
system’s performance is measured by the system’s ability to stabilise quickly around a
new operating point far from equilibrium, which emerges from the sharp shift in
environmental conditions. This is illustrated by the methodology presented in Section 4.
A dynamic fitness function that emerges while the system abruptly adapts to sharp
changes in operating conditions is ‘tuned’ via negative feedback to stabilise the system’s
growth around a ‘most desired’ operating point (e.g. created by an attractor in our
example of Section 4). To accomplish this, the view of systems’ control has to undergo a
radical shift to accommodate the paradoxical concept of ‘controlling emerging systems’.

The traditional view of control engineering is that the controller is a separate entity
that monitors and affects the main system, generally by the feedback from its output
variables onto its input variables (Isermann, 1996). In the paradigm shift towards
emergent engineering, this system/controller pair becomes fragmented into a myriad of
micro-system/micro-controller pairs (represented in our model as simple agents and their
individual rules; see also Müller-Schloer and Sick, 2008). Rather than attempting to
stabilise the whole complex system in a centralised manner, the emergent controller is
implemented in the form of generic control mechanisms located in every component of
the complex system. In most typical examples of complex systems, such as pattern
formation (e.g. Gierer and Meinhardt, 1972), swarm intelligence (e.g. Bonabeau et al.,
1999) or collective motion (e.g. Grégoire and Chaté, 2004), agent rules can be
decomposed into two parts: a positive feedback that amplifies small local fluctuations in
the micro-system, and a negative feedback that dampens or corrects the agent’s response,
and tunes its behaviour more finely (micro-controller). For example, insect colonies
provide examples of positive feedback (Bonabeau et al., 1999): ants deposit more
pheromone where there is already enough, and termite brings more pellets of soil where
there is already a heap of soil. Starting from small initial fluctuations, positive-feedback
agent behaviour generally creates a single large homogeneous cluster characterised by
some increasing quantity (concentration, size, etc.). More interesting structures can then
emerge and be stabilised by adding negative feedback. For example, in collective motion
(Grégoire and Chaté, 2004), a bird follows the flock by continuously readjusting its speed
and orientation. Each agent corrects small differences by sensing neighbouring agents,
and the collectivity converges, albeit temporarily, to a stable trajectory (i.e. the
appropriate action plan). Thus, at the emergent level, the tendency of positive feedback is
to create new mesoscopic or macroscopic structures, while negative feedback tends to
stabilise them (Grobbelaar and Ulieru, 2007). In other words, bottom–up growth is
guided through positive feedback (implemented in the individual rules of the
components) while top–down inhibition is regulated by negative feedback (implemented
through overall CPE system policies), stopping the growth when it goes outside desired
regions. With this, the fitness measure is dynamically attuned via top–down negative
feedback to enable the system’s adaptation to sharp and unexpected changes in the

 46 M. Ulieru and R. Doursat

environment. These changes, in turn, can only be accommodated by letting the system’s
components self-organise from the bottom–up, in order to let the system adapt and
co-evolve with the dynamic environment.

3.3 Traditional engineering considers complex systems’ emergence as
an undesirable ‘threat’

What traditional engineering fears most is the ability of complex systems to exhibit
emergence, often assimilated with unwanted behaviour. Surely, goes the quip, one would
not want an aircraft to become too creative in mid-flight. Typical questions concern how
we can understand such systems and how we can have confidence in the results being
produced. Indeed, when starting from such a premise, large collections of autonomously
interoperating agents do not appear to be the proper way to address future applications at
first sight. Yet, this reasoning is at odds with the striking properties of homeostasis and
adaptation reliably displayed again and again by natural systems, from geophysical to
biological processes – and life itself, which evolved from emergence (Kauffman, 2008).
Instead of aiming to transform all existing and already well-performing systems
developed by the solid traditional school into complex systems, emergent engineering
addresses the yet unmet design needs of the immense range of yet unaddressed
application domains, mostly CPE or domains where the traditional approach failed
(CNIP, 2006; Dondossola and Lamquet, 2006; Dunn and Mauer, 2006; IST, 2006;
SCADA, 2006).

Taking a closer look at how the internet has evolved into today’s complicated
network, prone to many pitfalls (Willinger and Doyle, 2002), one notices that the
classical engineering paradigm has in fact led to a spiral of increasing complexity
characterised by continuous ‘patching’. The purpose was to suppress unwanted
sensitivities or vulnerabilities – and thereby increase the system’s robustness – while
taking advantage of new opportunities for increased productivity, performance or
throughput. However, the result is far from what we need and is able to achieve from the
promises of eNetworks as controllers of large-scale, dynamic and continuously evolving
CPE. This is because classical engineering designers aim for robustness at the design
stage by seeking to find the right combination of parameter values that keep the system
under ideal functioning conditions – something impossible to do for emergent complex
systems. The robustness of complex systems goes far beyond optimal settings of a
system’s parameters, and reaches deep into their underlying structural properties
that have a major effect on their functionality, dynamics, robustness and fragility
(Alderson and Doyle, 2009). In response to this need, emergent engineering enables
robustness-by-structure achieved by appropriately designing the interactions among the
system’s elementary components (EE, 2002).

Our purpose is to guide the emergent behaviour of large-scale eNetworked CPE in
such a way that they reach desired performance. These systems can be construed as
‘(eco)systems of systems’ at multiple scales (Ulieru, 2004). They consist of smaller
module-systems, component-systems, etc., whose individual properties or attributes
dynamically combine to achieve an emergent desired behaviour at the global synergetic
level. For such systems, the question is not whether emergence is a good thing or not, but
rather how to influence a global behaviour that necessarily emerges from the multitude of
interactions. The essence of the emergent engineering paradigm is ultimately to find ways
to design the controllers for these large-scale eNetworked systems in order to stabilise

 Emergent engineering: a radical paradigm shift 47

their emergent behaviour around desired performance. The whole eNetwork can itself be
envisioned as a globally evolving controller, managing the performance of a complex
system to be controlled (Grobbelaar and Ulieru, 2007), for example, to use it to stabilise
the power grid in case of a blackout or to grow barriers to attacks in a complex crisis and
emergency management scenario (Ulieru, 2008).

3.4 Traditional engineering approaches distributed systems design in
a top–down centralised manner

The traditional engineering school of thought also induces significant biases when
it comes to the more recent and ongoing research in multi-agent, service-oriented and
large-scale distributed systems. To better understand this bias, one can broadly categorise
the discipline of distributed intelligent systems into two families, which we refer to as
‘service-oriented agents’ and ‘simple agents’.

On the one hand, service-oriented agents (e.g. Wooldridge, 2002) come with a huge
luggage of semantics and reasoning, which makes them ‘intelligent’ individually but
forces the system developer to design the architecture of their interactions in a
deterministic manner, and clearly specify each module from top–down (Figure 1(a)).
Distributed service-oriented systems come from a historical trend in software engineering
and artificial intelligence that has been gradually replacing big monolithic programmes
by clean architectural principles based on layers, modules, objects, etc., that communicate
via application programming interfaces (API) (e.g. Tanenbaum and van Steen, 2002). It
was realised that disentangling and removing cycles from the graph of function calls
allows to group functions into code ‘parts’, thereby fixing, upgrading or replacing these
parts independently from each other, without having to rewrite the rest. Service-oriented
systems emphasise the role of software agents as proxies representing users or other
physical entities and their interests (information-searching internet agents, price-bidding
electronic brokers, device-monitoring automation agents, etc.). Here, agents try to satisfy
goals under the constraints created by the other agents and their environment.

On the other hand, the alternative ‘simple-agent’ paradigm is more appropriate to the
modelling of CPE as complex adaptive systems (CAS) (Levin, 2003) using ABMS
(Macal and North, 2006). They enable a collective intelligence operating across
multitudes of components at various scales that interact intensively with each other. CAS
agents are typically expressed with simpler semantics (Holland, 1998) and are able to
produce collective intelligence from their interactions. Agent behaviour can be derived
from statistical models and input information (Newman 2006; North and Macal, 2007).
Historically, ABMS represents the perspective of social sciences and discrete
mathematics, rather than engineering. It arose from the need to model systems that were
too complex for analytical descriptions, such as social interactions and the economy
(Terranova, 2004). Helped by the rise of computing power, it soon became a practical
tool in many other scientific disciplines, such as ecology, biology and physics. Most of
ABMS is based on a combination of three types of topologies (Macal and North, 2006):
fixed grids such as square pixels, arbitrary networks with long-range connections and 2D
or 3D Euclidean space supporting irregular lattices of mobile agents with nearest-
neighbour interactions. In contrast to service-oriented multi-agent systems, ABMS rather
stresses the social interactions among agents towards a collective emergent behaviour
with a higher purpose that cannot be identified in the behaviour of the individual parts at
a particular scale of observation.

 48 M. Ulieru and R. Doursat

To summarise crudely, the MAS involves a limited number of heavy-weight
(code-laden), individual, intelligent agents that perform complex functions, while ABMS
tends to rely on many light-weight (few rules), simpler agents that are highly interactive
to generate collective intelligence. Emergent engineering explores the links between
agents and large-scale distributed systems based on simple agents, along the lines of the
ABMS paradigm. Agent properties must be able to meet the management and
coordination needs of safety-critical interconnected systems and infrastructures fuelled by
inexpensive and ubiquitous sensing, communications and computation. Towards this
goal, emergent engineering proposes to construe agents as ‘simple’, following the
seminal works of Holland (1998), Kauffman (2000) and the more recent advances in ICT
eNetworks (Carreras et al., 2007; North and Macal, 2007). CPE technologies are
envisioned to dramatically evolve over the next years. New properties, issues,
interdependencies and vulnerabilities will occur that cannot be envisioned today. To
avoid today’s solutions becoming tomorrow’s problems, a primary requirement for the
design of eNetworked CPE is to embed now in their fabric the faculty of ‘evolve-ability’
mentioned above, that is, the ability of a system to seamlessly accommodate unexpected
(either gradual or abrupt) changes by developing new characteristics or properties that the
system did not display previously (Carreras et al., 2007).

4 An abstract model of self-made network

In emergent engineering, architecting is done without a global architect. It relies entirely
on defining the basic cells and the mechanisms by which these cells are able to create
reliable architectural components. In this part, we present an abstract model of self-made
network based on this idea. It radically departs from service-oriented architectures, in
which architectural modules are predefined in a top–down fashion, because it lets
architectures grow and evolve from the bottom–up interaction between components. We
offer here a methodological framework for micro-architecting these elementary
components or ‘cells’, such that they are capable of collectively generating a desired
behaviour by emergence, and tuning the dynamic adaptation of the CPE to gradual or
abrupt changes in performance requirements and environmental conditions. In doing so,
we are seeking generic methods for the design of local interactions that lead, via
self-organisation, to a global behaviour while guiding the system towards desired
(yet dynamically adapting and evolving) performance criteria.

The few sections of this section present a condensed overview of preliminary results
obtained from a new, original model of autonomous network dynamics. We show a
model of network development and evolution that is inspired by the biological
development and evolution of organisms and, in this sense, belongs to a class of artificial
embryogeny (AE) systems (Bentley and Kumar, 1999; Stanley and Miikkulainen, 2003).
AE systems are a particular case of evolutionary computation in which the mapping from
genotype to phenotype is only indirect as it is realised through a complex developmental
stage. This is also called an evolutionary developmental or ‘evo-devo’ approach. Instead
of coding directly for macroscopic features of the phenotype (the system), the parameters
of the genotype code for microscopic features of the cells are coded (the components),
that is, their abilities to communicate, their propensity for motion and their affinities for

 Emergent engineering: a radical paradigm shift 49

assembly with other cells. Like biological cells, nodes in a self-constructing network
share the same genotype, that is, the same set of rules. Imitating cell division,
differentiation and self-positioning, a node spawns other nodes, follows its own execution
path (within the common programme) – which may diverge from its neighbours
depending on its position – and creates specific links with other nodes according to this
fate.

In eNetworked CPEs, nodes can represent human agents who carry personal digital
assistant (PDA) devices with wireless and peer-to-peer connectivity. The self-assembly
programme includes routines for the exchange of messages and the dynamical creation or
removal of links. It relies on a combination of ‘ports’ and internal state variables derived
from discrete ‘gradients’. Ports and gradients guide the new nodes to specific attachment
locations in the developing network. As the network expands and node positions change,
nodes adapt by switching on or off different subsets of the common set of rules – similar
to gene activation/inhibition in biological DNA – thus triggering the growth of specific
structures such as chains, lattices and more complicated composite topologies.

Compared to other AE models, such as L-systems (Siero et al., 1982), the novelty of
our model resides in the fact that it is both context-dependent (heterogeneous) and
self-dissimilar (non-repetitive, irregular), and also that it contains microscopic
randomness (at the level of nodes) while it is reproducible at the macroscopic level
(of the whole graph, that is, the ‘phenotype’). It extends and generalises the principles of
pattern formation and collective motion found in morphogenesis from 2D/3D shapes
(Doursat, 2006, 2008a,b) (Figure 5) to nD-graph topologies.

4.1 Growing simple chains

The self-assembling networks envisioned here are composed of dynamical nodes that can
carry various pairs of attachment ports (X, X) and corresponding pairs of gradient values
(x, x). Ports can be ‘occupied’ (linked to other ports on other nodes) or ‘free’
(not linked), while free ports can be ‘open’ (available for connections) or ‘closed’
(disabled). Chains are the simplest self-assembling structures that can be realised with
one pair of ports in each node (Figure 2(a)–(c)). New nodes that just arrived in the
system’s space or nodes that are not yet connected, have both ports open and gradients set
to 0. A node i can create a link with another node j only through a pair of complementary
open ports, here X and X , with one link per port. As soon as a new link is made, ports are
occupied and gradients are immediately updated according to the following rules:

1 a free port always maintains its value at 0 (gradient source)

2 x is sent out through port X to port X of the neighbour node with an increment of +1
(resp. x , X, X).

Discrete counter increments are also the method of choice for spreading positional
information in amorphous and spatial computing systems (e.g. Doursat, 2008b;
Nagpal, 2002).

 50 M. Ulieru and R. Doursat

Figure 2 Dynamical and evolvable self-assembly of a network based on programmable nodes.
Occupied and closed ports are displayed in light colours, while open ports are displayed
in dark colours (see online version for colours)

The purpose of the gradient counters (x, x) is to keep track of the nodes’ positions in the
chain. This allows, for example, to build chains of a fixed length n by closing ports as
soon as x + x’ = n 1. It can also create more complicated structures by switching on or
off certain attachment rules when certain gradient values have been reached. All nodes
carry the same programme (their genotype or ‘DNA’), which consists of three main
routines: gradient update (G), port management (P) and link creation (L). The gradient
update routine G is the generic code that provides nodes with the positional information
(x, x) that they need to make further decisions (see propagation and increment rules
1 and 2 above). The port management routine P (illustrated in Figure 2(g)) contains the
heart of the logic (the genotype) specific to the construction of a target structure
(the phenotype). Routines G and P are executed by the nodes already involved in the
network, and prepare the way for new nodes to execute L. Link creation routine L
provides the generic logic that prompts new nodes to pick one of the open ports of the
network at random to make a new connection.

4.2 Creating modular structures with different gradients

More complicated structures can be developed by composing multiple chains in
branching arrangements (Figure 2(d)–(f)). To allow the creation of modules with their
own identities and local positional information, one can find again inspiration from
biology, in particular the concepts of modularity and homology so central in evo-devo
(Callebaut and Rasskin-Gutman, 2005). Modules are similar to ‘limbs’ that have distinct
morphologies and geographies. This is modelled here by different coordinate systems
based on tags a, b, c, etc. Gradient ports in one part of the system, for example, a chain,
are denoted by (Xa, X a), while ports in other branches will be (Xb, X b), (Xc, X c), etc.
Accordingly, routine L is amended so that links cannot be created between ports with
different tags.

 Emergent engineering: a radical paradigm shift 51

In the simple scenario of Figure 2, only the X a port is open in the beginning
(Figure 2(a) and (b)). When the third node has attached, another pair of ports (Xb, X b) is
created on that node and only port X b stays open (Figure 2(c)). Note that this particular
event is triggered by the positional information carried by the node: in this example, the P
routine (Figure 2(g)) stipulates that when xa = 2, a node must differentiate into a
bifurcation node, that is, create another pair of ports and their corresponding gradient
variables. After this event, new nodes can attach to either open port, X a or X b

(Figure 2(d)), that is, either choose to first augment the original chain or its branch.
However, the order of node attachment will not modify the final structure. New nodes
carry an untagged pair of ports (X, X) and acquire the tag of their first contact. The same
‘stop-rule’ of chains applies here when the b branch reaches length nb = 3, that is,
xb + x b = 2, closing the only open port X b (Figure 2(e)). Independently, another branch c
grows from the fifth node of chain a and stops at nc = 4 nodes, while chain a stops at
na = 6 nodes.

4.3 Cluster nodes

In biological development, the position and number of individual cells is very imprecise,
while the structures and organs they form are reliably placed. Similarly, programmed
network self-assembly could also be irregular at the microscopic level of the nodes, while
retaining an orderly arrangement at the higher, ‘mesoscopic’ levels of clusters of nodes.
This property of variability of an emerging structure, in addition to its fundamental
programmability, is embodied here by replacing single nodes with clusters (Figure 3).
This is done through a special port, C (as in ‘cluster’ or ‘clique’) that allows multiple
nodes with identical gradient coordinates to form random connections with each other.
The C port represents an extra ‘non-linear’ dimension added to the pairs of ports (Xa, X a),
(Xb, X b), etc., of any composite structure. Another new feature is that nodes are also
allowed to make multiple connections per port, whether X or C. Thus, in the case of a
chain, a new node has two possibilities of attachment: it can either thicken or lengthen the
chain. It either connects to an existing node through C, in which case it inherits the
coordinates of that node’s cluster, or it connects as before via X or X ports, in which case
it pioneers the creation of a new cluster at one end of the chain and all coordinates are
updated according to the usual gradient dynamics. After their first link, new nodes may
also establish a few supplementary connections through any of their ports, under the
constraint of coordinate consistency (1 and +1 via ports X or X , equal coordinates via
port C).

Similar to cellular proliferation in morphogenetic tissues and organs, this proliferation
of nodes in structured networks introduces redundancy and ‘failover’ safety. Unlike
single-node chains, the failure of one link in a cluster chain does not imply the failure of
the whole structure. Yet, while relying on a fluctuating swarm of agents for its
robustness, the overall topology of a programmed network is still not left to chance but
narrowly guided by the genotype of the attachment rules G, P and L to grow the desired
structures.

 52 M. Ulieru and R. Doursat

Figure 3 Programmable network topologies, in which the main nodes are in fact composed of
clusters of randomly connected sub-nodes. These topologies exhibit both randomness
at the microscopic level and precision and reproducibility at the macroscopic level
(see online version for colours)

4.4 Further guidelines towards concrete applications
The emergent engineering process described above defines components and their
interactions, but the primary challenge is to ensure that the design produces a desired
global functionality. The previous section presented abstract mechanisms of self-made
networks that have a purely endogenous (i.e. bottom–up) ability to form precise
configurations. It established new foundations for the emergence of non-random,
programmable patterns exhibiting intrinsic structures that are neither repetitive nor
imposed by the environment. Starting from these premises, in order to make it applicable
to concrete problems, we aim to complete the model with the following features: physical
space, developmental adaptation to a dynamic environment, agent functionality, and
hierarchical command and control.
Physical space: as mentioned in the Introduction section, most real-world eNetworks
combine, to a certain extent, non-spatial graph topologies (e.g. connecting organisations
and entities) with Euclidean graph topologies (e.g. connecting people and equipment on
the field). The abstract mechanisms of programmed attachment described in Section 4
create purely non-spatial graphs that are displayed in 2D figures only for convenient
viewing. Space can then intervene at two levels: by limiting the scope of pre-attachment
detection (nodes can connect only to nearby nodes, within a certain radius), and by giving
a mechanical meaning to the nodes and links.
Developmental adaptation to a dynamic environment: most importantly, as it is a
recurrent theme of this paper, the propensity to create specific network morphologies by
programming the nodes must also be influenced and modified by the environment in
which those formations will function. In Sections 4.1–4.3, node attachment was based on
port availability driven only by positional gradient values. This internal dynamics must
now interact with the external dynamics of the system’s context, via the physical space of
the environment, along with all its possible boundary conditions and events occurring
unexpectedly. Environmental landmarks can play different roles in the self-structuring
process, acting as triggers, attractors or obstacles. Figure 4 gives an example of numerical
simulations of self-organised network morphologies – in which nodes execute a program
similar to that of Figure 2 – that exhibits a high degree of adaptation to environmental
constraints, such as spatial boundary conditions. Each network is based on the same node
program (genotype), yet grows differently (‘polymorphism’ of the phenotype) as it senses
its environment.

 Emergent engineering: a radical paradigm shift 53

Figure 4 This numerical simulation of self-organised network morphologies – in which nodes
execute a program similar to that of Figure 2 – shows that they can exhibit a high
degree of adaptation to environmental constraints, such as spatial boundary conditions.
Each network is based on the same node program (genotype), yet grows differently
(‘polymorphism’ of the phenotype) as it senses its environment (e.g. via an anti-
collision rule between the nodes and the red walls) (see online version for colours)

Agent functionality: another important aspect not included in the abstract model is the
diversity of functional roles that agents may take on, in addition to their self-assembly
capabilities. The model should also mix various predefined agent identities before they
even further differentiate by gradient position inside the structure. This natural
heterogeneity of agents could be reflected in the model by a heterogeneity of ports and
gradients, and diversified attachment rules that depend on agent types. This would result
in various subnetworks of two kinds: ‘intra-category’ subnetworks linking agents of the
same expertise, and ‘inter-category’ subnetworks combining agents of different expertise
together.

Hierarchical command and control: finally, as discussed in the Introduction section, the
adequacy or ‘fitness’ of the deployed eNetwork to a specific situation, both in its
structure and function, might also depend on a two-way communication between
the agents and a remaining central supervision. Some CPE cannot exclusively rely on
peer-to-peer self-organisation at the local level, and might still need (minimal)
monitoring and orchestration at the global level. In this framework, dynamical adaptation
to an evolving environment basically can happen at two levels:

1 quick adaptation to local circumstances at the level of the agents under the same
rules of deployment

2 major changes of strategy at the command level that change the rules of deployment.

 54 M. Ulieru and R. Doursat

Figure 5 Genotype and phenotype in artificial embryogeny (see online version for colours)

Source: Doursat (2006, 2008a,b).

High-level command and control action plans would set only the global course of the
action, while the low-level implementation details are carried out by individual agent
protocols (e.g. real-time positioning). Action plans are compiled down into local rules of
attachment and broadcasted to all agents. Thus, the network can adapt to new incidents
and episodes of an evolving situation by reprogramming the agents on the fly to create
new formations.

In summary, future work can expand the abstract algorithmic rules (gradient update
G, port management P and link creation L) to take into account spatial extension, external
events, agent diversity and hierarchical command. By implementing these four
principles – in addition to intrinsic self-connectivity – self-organised and structured
eNetworks could become truly functional and evolvable. This dynamical process would
be continuously adjusting to the environment’s dynamics, including its unexpected new
events and effects. The effectiveness of an eNetwork would depend on how its genotype
is designed (i.e. how individual roles are specified through protocols) in such a way as to
obtain maximal synergy under the overarching constraints imposed by the phenotype
(reflected in network policies; Figure 5). It is this continuous ‘balancing act’ between
individual agent autonomy and overall goals (previously explored in holonic enterprises)
that would enable the emergence of effective structures, which grows when and where
needed, to face unexpected developing events. This could ensure a continuous adaptation
and co-evolution with an environmental dynamics by making an eNetwork CPE (as the
controller) ‘weave itself’ into the situation to control like a nervous system, growing new
connections and ‘nerves’ around important events and locations (Ulieru, 2008).

5 Emergent engineering

5.1 The paradigm shift in a nutshell

To ensure stability and predictability as major desirable systems characteristics, classical
engineering often strives to eliminate self-organisation and emergent processes in favour
of reductive piece-by-piece design, characteristic of the way complicated rather than
complex systems arise (Alderson and Doyle, 2009). By contrast, the structure of a
complex system (Bar-Yam, 2003) is not the result of a historic design process, but a
contingent process of evolution (Kicinger, 2004). The primary difference is that systems

 Emergent engineering: a radical paradigm shift 55

designed through the classical engineering process are expected to perform foreseeable
tasks in a bounded environment, whereas complex systems, either natural (living
organisms, insect colonies, ecosystems) or man-made large-scale CPE (communication
networks, transportation networks, cities, societies, markets, multinational corporations;
Terranova, 2004) are expected to function in complex, open environments with
unforeseeable contingencies. This requires high adaptability by which the system can
evolve novel configurations emerging from clustering its components in new ways.

Optimality and performance: just as traditional engineering seeks optimal solutions,
emergent engineering must seek ‘optimal’ configuration spaces, where near-optimal
configurations for an infinite number of as-yet unforeseen circumstances are numerously
implicit (Doyle and Csete, 2007). The promise of emergent engineering is, therefore, one
of open-ended discovery of new system configurations that can respond to unforeseeable
changes, rather than predetermined performance targeted at static environmental
conditions.

Utility: in the classical paradigm, utility is assured by the explicit design and testing of
the processes that produce the desired functionality and the pathway from component
behaviour to system behaviour is clear. This is not the case of engineered complex
systems where, by definition, system functionality is emergent and too complex to be
described explicitly in terms of component behaviour. New behaviour evolves from the
components’ interactions, and utility is measured by the degree to which the new
behaviour reflects an adequate system adaptation to the environmental changes.

Performance metrics: implicit in most work (Minai et al., 2006) is the notion
that complex systems should be judged on their meta-attributes such as robustness
(Alderson and Doyle, 2009), evolvability (Carreras et al., 2007), adaptability, scalability
(Ulieru, 2004), etc., rather than on narrowly defined tasks. However, defining and
measuring these properties is still far from being an exact science. Current methods for
evaluating engineered systems encompass rigidly specified criteria with well-defined
‘correct performance’, while we are still lacking metrics to assess the meta-attributes that
make a complex system worth its competitive advantages.

Evolution vs. evolvability: traditionally, in engineering, evolutionary methods have been
considered to be just another optimisation technique, in which human designers create the
meta-process of problem specification and interpretation, such as defining a ‘fitness
function’ as a measure of how well the system has improved through evolution. The
evolution of large complex systems (called ‘evolvability’ by Carreras et al., 2007) takes
place primarily in their functional environment in which, by enabling the system to adapt
to real-world tasks through changes in components and their interactions over time, the
system creates new configurations to address abrupt change. Doing so, it evolves new
behaviour that was simply not displayed or impossible to display before. In this way,
‘evolvability’ can encompass ‘evolution’ because it can create behaviour that would not
have been possible before the dramatic adaptation that the system had undergone. Yet,
evolvability can be more relaxed and enables the system to only manifest properties that
it had but never used, and ‘experience itself’ through behaviours that were possible but it
did not have the opportunity to display before. Due to the particular traits of systems that
exhibit emergent behaviour, it is not easy to point to an exact boundary between
evolution and adaptation, especially in the case where the system never exhibited certain
behaviours, although they were in the plethora of possibilities. What we consider

 56 M. Ulieru and R. Doursat

important is to distinguish between lean adaptation and sharp adjustment of the system’s
behaviour to accommodate abrupt change – which can also lead to permanent mutation
(‘true evolution’).

Robustness: classical engineering designers seek to find the right combination of
parameter values that keep the system under ideal functioning conditions – something
impossible to do for emergent complex systems. The robustness of complex systems goes
far beyond optimal settings of a system’s parameters, and reaches deep into their
underlying structural properties that have a major effect on their functionality, dynamics,
robustness and fragility (Alderson and Doyle, 2009). In response to this need, emergent
engineering enables robustness-by-structure achieved by appropriately designing the
interactions among the system’s elementary components.

In summary, eNetworked CPE can be modelled as CAS using the ABMS paradigm to
build a collective intelligence, operating across a multitude of components at various
scales that interact intensively with each other. Since CAS agents are relatively simple in
their semantics, like cells in natural organisms, the system’s intelligence results from
their collective interactions. Most surprisingly, our deepened understanding of genomics
and molecular biology (Kauffman, 2008) has revealed that, at the network and protocol
level, cells and organisms are strikingly similar to technological networks, despite having
completely different material substrates, construction and evolution dynamics (Doursat,
2008a,b; Doyle and Csete, 2007). Biological agents (cells) carry a set of rules (DNA) that
endows them with a repertoire of non-trivial behaviours. Methods to reintroduce a certain
dosage of programmability inside free self-organisation, in the form of a developmental
genotype (Figure 5) are explored in the field of artificial development (Bentley and
Kumar, 1999; Doursat, 2006, 2008a,b) and amorphous computing (Abelson et al., 1999;
Nagpal, 2002). The global behaviour is specified in terms of primitive behaviours at the
agent level and this ‘programme’ is then ‘compiled’ into a common behavioural
specification for all agents, ensuring the emergence of the desired global effect. To date,
there is no unified ‘complex systems science’ or agreed-upon ‘complexity theory’. No
central dogma or modern synthesis has yet happened for complex systems, as it has for
biology. However, a great diversity of related topics and disciplines coexist, and a vast
array of mathematical and computational tools were recently proposed (Minai et al.,
2006; Newman, 2006). We aim to look at the commonalities across these domains in
search for the generic principles of emergent engineering.

5.2 Principles of emergent engineering

From the above considerations, we can envision the following generic principles of
emergent engineering:

Architecting from the bottom–up without an architect: a closer look at complex systems
(biological or techno–social) reveals that they all consist of a large number of agents,
which follow a set of micro-instructions or rules on how to search and connect to
other agents, interact with them over these connections, change one’s internal state
and carry out some specialised function. The rules act upon an array of internal
variables – developmental (dedicated to building the system) and functional (dedicated to
making the system carry out tasks). The rules can also be modulated by parameters that
may evolve over time, according to a global fitness that the system is exhibiting with

 Emergent engineering: a radical paradigm shift 57

respect to its function in the environment. By analogy to biology, our approach considers
genetic-like regulation at the agent level to harness large-scale eNetworked CPE.
Ultimately, the quest of emergent engineering is to define the blueprint (the DNA
structure) of a ‘cell’ in such a way that architectural components collectively emerge and
the eNetwork grows CPE with desired characteristics.

Control without a controller: Using the eNetwork to control large-scale CPE: the
traditional view of control engineering is that the controller is a separate entity that
monitors and affects the main system, generally by feedback from its output variables
onto its input variables. It is extremely hard, if not impossible, to control a large-scale
eNetworked CPE by building a global-logic, top–down system able to rapidly adapt to
changes adequately if each element needs to be instructed about what to do at each step.
In the paradigm shift towards emergent engineering, this system/controller pair becomes
fragmented into a myriad of micro-system/micro-controller pairs, where a micro-system
is a ‘cell’ and its micro-controller is the subset of rules responsible for stabilising its
behaviour. Agent rules can be decomposed into two parts:

1 a positive feedback that amplifies small local fluctuations (micro-system)

2 a negative feedback that dampens or corrects the agent’s response, and tunes its
behaviour more finely (micro-controller).

At the emergent level, the tendency of the former is to create new macroscopic
structures, while the latter tends to stabilise them. Emergent engineering aims at a
methodology to evolve the micro-controller in individual cells, such that eNetworked
CPE can deploy emergent desired functionalities.

Thus, the emergent engineering paradigm opens perspectives on how strategies that
mimic natural adaptation of highly evolved robust systems can be developed with simple
agents: “When one gets a collective behaviour from the bottom-up individual interactions
of a multitude of elements, adaptation of the large scale system to unexpected disturbance
comes naturally, and only in regions where it is needed” (Levin, 2003).

Co-evolving the CPE with the environmental dynamics: once the basic ‘eNetwork DNA’
parameters have been set to achieve the CPE growth (architecture) and function (control),
the remaining question is how to make the CPE co-evolve with the environmental
dynamics. After reaching structural maturation on a short deployment time scale, the
eNetworked CPE should switch the bulk of its activity from executing the developmental
part of its genotype (Figures 2(g) and 5) (dynamic architecting, which positions the
actors within the network so that they can best perform their activity in coalitions or
teams) to executing the functional part of its genotype (adaptive control obtained by
executing their roles within the teams to realise the most effective action plans). This can
be done by specifying how the genotype (individual agent rules) may vary and how the
phenotype (overall CPE network policies that enable the selection of appropriate
behaviour) may be selected. The challenge of emergent engineering is to deliver a
method to balance the genotype (developmental) and phenotype (functional) parts
(Figure 5).

 58 M. Ulieru and R. Doursat

6 Conclusions

In response to the need to manage the complexity of large-scale eNetworked CPE, we
proposed a breakthrough in the design of resilient and efficient complex distributed
systems that could affect many disciplines in the next decades by radically rethinking
systems engineering. Emergent engineering attempts to put natural and engineering
complex systems within the same discipline – closing the loop between complex systems
science and complex systems engineering. In this paradigm, the study of natural complex
systems leads to better methods for complex engineered systems while experience with
building and manipulating complex engineered systems enhances the understanding of
how natural complex systems function. This research will open the door to new
inventions enabling the development of solutions crucial for the orderly functioning of
society and the economy (EE, 2002). Examples can be found in the resilient deployment
of interdependent critical infrastructures and blackout-free optimised power grid, holistic
security ecosystems, hazard-free transportation (automotive networks for aerospace and
avionics), network-enabled operations (Dorn, 2007), emerging architectures of
participation by peer production in organising work, etc. Evolve-able, resilient and
efficient CPE unleash a great potential for the seamless integration of yet unthinkable
technologies within the fabric of our Planet – thus creating an open environment for
far-reaching continuous societal, economic, industrial and technologically sustainable
growth. CPE will accommodate both gradual and disruptive developments, whose
influence on our lives cannot be fully grasped today, such as the threat of climate change.

Acknowledgements

This collaborative work has been made possible in part by the Scientific Services of the
French Embassy in Ottawa, through their funding of Dr. Doursat’s visit to Prof. Ulieru’s
Adaptive Risk Management Laboratory at UNB. We thank Adam MacDonald, MSc
student with Prof. Ulieru, for his excellent work in producing the computer simulations
using his Fluidix© software package http://www.onezero.ca.

References
Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T., Jr., Nagpal, R., Rauch, E.,

Sussman, G. and Weiss, R. (1999) ‘Amorphous computing’, MIT Artificial Intelligence
Laboratory memo 1665.

Alderson, D. and Doyle, J.C. (2009) ‘Can complexity science support the engineering of critical
network infrastructures?’ IEEE Transactions on Systems, Man and Cybernetics, Part A,
Special issue on Engineering Cyber-Physical Ecosystems, July 2009.

Bar-Yam, Y. (2003) Dynamics of Complex Systems. Westview Press.
Bentley, P. and Kumar, S. (1999) ‘Three ways to grow designs: a comparison of embryogenies for

an evolutionary design problem’, in W. Banzhaf et al. (Eds.), Proceedings of the Genetic and
Evolutionary Computation Conference. Orlando, Florida: Morgan Kaufmann, Vol. 1,
pp.35–43.

Boardman, J. and Sauser, B. (2007) Systems Thinking: Coping with 21st Century Problems.
CRC Press.

 Emergent engineering: a radical paradigm shift 59

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press.

Callebaut, W. and Rasskin-Gutman, D. (2005) (Eds.) Modularity. MIT Press.
Carreras, I., Miorandi, D. and Chlamtac, I. (2007) ‘From biology to evolve-able ICT systems’, 1st

International Workshop on eNetworks Cyberengineering, IEEE Systems Man and Cybernetics
Conference, Montreal, Canada, October 7–10, 2007.

Carreras, I., Miorandi, D., Saint-Paul, R. and Chlamtac, I. (2009) ‘Bottom–up design patterns and
the Energy Web’, IEEE Transactions on Systems, Man and Cybernetics, Part A, Special issue
on Engineering Cyber-Physical Ecosystems, July 2009.

CNIP (2006) International Workshop on Complex Networks and Infrastructure Protection, Rome,
Italy, March 28–29.

CPS (2008) Cyber-Physical Systems Summit, St. Louis, MO, USA, April 24–25.
Dondossola, G. and Lamquet, O. (2006) ‘Cyber risk assessment in the electric power industry’,

Cigrè Electra Magazine 224.
Dorn, W. (2007) ‘Tools of the trade? Monitoring and surveillance technologies in UN

peacekeeping’, Report to the UN Peacekeeping Commission.
Doursat, R. (2006) ‘The growing canvas of biological development: multiscale pattern generation

on an expanding lattice of gene regulatory networks’, InterJournal: Complex Systems 1809.
Doursat, R. (2008a) ‘Organically grown architectures: creating decentralized, autonomous systems

by embryomorphic engineering’, in R.P. Würtz (Ed.), Organic Computing. Berlin: Springer-
Verlag, pp.167–200.

Doursat, R. (2008b) ‘Programmable architectures that are complex and self-organized:
from morphogenesis to engineering’, 11th International Conference on the Simulation and
Synthesis of Living Systems, Winchester, UK, August 5–8, ALIFE XI.

Doyle, J. and Csete, M. (2007) ‘Rules of engagement’, Nature, Vol. 446, No. 7138, p.860.
Dressler, F. (2007) Self-Organization in Sensor and Actor Networks. NY: Wiley.
Dunn, M. and Mauer, V. (2006) (Eds.) The International Critical Information Infrastructure

Protection (CIIP) Handbook 2006: Analyzing Issues, Challenges, and Prospects. ETH Zürich:
Center for Security Studies.

EE (2002) Workshop on Emergent Engineering. Boston, MA: MIT. Available at:
http://cba.mit.edu/events/02.10.emergent (accessed 6 October 2002).

Gierer, A. and Meinhardt, H. (1972) ‘A theory of biological pattern formation’, Kybernetik,
Vol. 12, pp.30–39.

Grégoire, G. and Chaté, H. (2004) ‘Onset of collective and cohesive motion’, Physical Review
Letters, Vol. 92, p.025702.

Grobbelaar, S. and Ulieru, M. (2007) ‘Complex networks as control paradigm for complex
systems’, 1st International Workshop on eNetworks Cyberengineering, IEEE Systems Man
and Cybernetics Conference, Montreal, Canada, October 7–10.

Gross, R., Bonani, M., Mondada, F. and Dorigo, M. (2006) ‘Autonomous self-assembly in
swarm-bots’, IEEE Transactions on Robotics, Vol. 22, No. 6, pp.1115–1130.

Holland, J. (1998) Emergence: From Chaos to Order. Redwood City, CA: Addison-Wesley.
Isermann, R. (1996) Digital Control Systems. New York: Springer-Verlag.
IST (2006) Workshop on Resilient Infrastructures and Information Fusion for Security, EU IST

Event 2006, Helsinki, Finland, November 21–23.
IT Revolutions (2008) ‘Foreword by Mihaela Ulieru, General Chair’, 1st International Forum of an

IT-Driven World, Venice, Italy, December 17–19.
ITU Internet Reports (2005) ‘The internet of things’, World Summit of the Information Society,

Tunis, Tunisia, November 16–18. Available at: www.itu.int/internetofthings
Kauffman, S. (2000) Investigations. Oxford University Press.
Kauffman, S. (2008) Reinventing the Sacred. Basic Books.

 60 M. Ulieru and R. Doursat

Kicinger, R. (2004) Emergent Engineering Design: Design Creativity and Optimality Inspired by
Nature, PhD Thesis, George Mason University, 680 pages; AAT 3151149.

Lee, E.A. (2007) ‘Computing foundations and practice for cyber-physical systems: a preliminary
report’, Technical Report UCB/EECS-2007-72, University of California, Berkeley.

Levin, S.A. (2003) ‘Complex adaptive systems: exploring the known, the unknown and the
unknowable’, Bulletin of the American Mathematical Society, Vol. 40, pp.3–19.

Macal, C.M. and North, M.J. (2006) ‘Tutorial on agent-based modeling and simulation, Part 2: how
to model with agents’, in L.F. Perrone et al. (Eds.), Proceedings of the 2006 Winter Simulation
Conference, pp.73–83.

Marzano, S. and Aarts, E. (2003) The New Everyday View on Ambient Intelligence.
The Netherlands: Uitgeverij 010 Publishers.

Minai, A.A., Braha, D. and Bar-Yam, Y. (2006) ‘Complex engineered systems’, in D. Braha,
Y. Bar-Yam and A.A. Minai (Eds.), Complex Engineered Systems: Science Meets Technology.
Springer-Verlag.

Müller-Schloer, C. and Sick, B. (2008) ‘Controlled emergence and self-organization’,
in R.P. Würtz (Ed.), Organic Computing. Springer-Verlag, pp.81–104.

Nagpal, R. (2002) ‘Programmable self-assembly using biologically-inspired multi-agent control’,
1st International Conference on Autonomous Agents, Bologna, Italy, July 15–19.

Newman, M.E.J. (2006) ‘Modularity and community structure in networks’, Proceedings of the
National Academy of Sciences, Vol. 103, No. 23, pp.8577–8582.

North, M.J. and Macal, C.M. (2007) Managing Business Complexity: Discovering Strategic
Solutions with Agent-Based Modeling and Simulation. Oxford University Press.

SCADA (2006) Proceedings of the 2006 Process Control and SCADA Security Summit, Las Vegas,
Nevada, September 28–30.

Siero, P., Rozenberg, G. and Lindenmayer, A. (1982) ‘Cell division patterns: syntactical
description and implementation’, Computer Graphics and Image Processing, Vol. 18,
pp.329–346.

Stanley, K.O. and Miikkulainen, R.A. (2003) ‘Taxonomy for artificial embryogeny’, Artificial Life¸
Vol. 9, pp.93–130.

Tanenbaum, A.S. and van Steen, M. (2002) Distributed Systems: Principles and Paradigms.
Prentice Hall.

Terranova, T. (2004) Network Culture: Politics for the Information Age. Pluto Press.
Ulieru, M. (2004) ‘Emerging computing for the industry: agents, self-organization and holonic

systems’, Workshop on Industrial Informatics, Busan, South Korea, November 2–6,
IECON’04.

Ulieru, M. (2008) ‘Enabling the SOS network’, Proceedings of the IEEE Systems, Man and
Cybernetics Conference (SMC 2008), Singapore, October 12–15.

Willinger, W. and Doyle, J. (2002) ‘Robustness and the internet. Design and evolution’, in E. Jen
(Ed.), Robust Design: A Repertoire of Biological, Ecological, and Engineering Case Studies.
Oxford University Press, pp.231–272.

Wooldridge, M. (2002) An Introduction to Multiagent Systems. John Wiley and Sons Ltd.
Würtz, R.P. (2008) (Ed.) Organic Computing. Understanding Complex Systems. Springer-Verlag.

Notes
1For previous works of the authors, on which this paper builds further, please refer to their

websites.
2Complexity here is regarded as a collective behaviour resulting from interaction between parts,

which cannot be anticipated because it is not implicitly contained in the behaviour of the
individual parts at a particular scale of observation. Emerging properties of the collective
behaviour are novel with respect to the individual parts of the system (Holland, 1998).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

