
What did we learn?

Views of AI fall into four categories:�

Thinking humanly

Thinking rationally
Acting humanly

Acting rationally

The textbook advocates "acting rationally"�

What is an Agent?
•

The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

•

Thus: an

agent

is a computer system capable of
autonomous action in some environment in order to meet
its design objectives

SYSTEM

ENVIRONMENT

input output

What is an Agent?
•

Trivial (non-interesting) agents:
–

thermostat

–

UNIX daemon (e.g., biff)
•

An

intelligent agent is a computer system

capable of flexible

autonomous action in
some environment

•

By flexible, we mean:
–

reactive

–

pro-active
–

social

Reactivity
•

If a program’s environment is guaranteed to be fixed,
the program need never worry about its own success
or failure –

program just executes blindly

–

Example of fixed environment: compiler
•

The real world is not like that: things change,
information is incomplete. Many (most?) interesting
environments are dynamic

•

Software is hard to build for dynamic domains:
program must take into account possibility of failure –

 ask itself whether it is worth executing!
•

A reactive

system is one that maintains an ongoing

interaction with its environment, and responds to
changes that occur in it (in time for the response to
be useful)

Proactiveness
•

Reacting to an environment is easy
(e.g., stimulus → response rules)

•

But we generally want agents to do
things for us

•

Hence goal directed behavior
•

Pro-activeness = generating and
attempting to achieve goals; not driven
solely by events; taking the initiative

•

Recognizing opportunities

Balancing Reactive and Goal-
 Oriented Behavior

•

We want our agents to be reactive,
responding to changing conditions in an
appropriate (timely) fashion

•

We want our agents to systematically work
towards long-term goals

•

These two considerations can be at odds
with one another

•

Designing an agent that can balance the
two remains an open research problem

What is an Agent?

sensors

environment
agent

?

actuators

percepts

actions

An intelligent

agent

perceives its environment
via sensors

and acts rationally upon that environment with

its actuators.

Cognitive Architecture for an Agent
Called a BDI (beliefs, desires, intentions) architecture

Like the reactive architecture at a coarse level, but with two
differences:
•Cognitive representations
•Deeper reasoning based on the above representations

Making decisions
•

We require software agents to whom complex tasks and goals can
be delegated

•

Agents should be smart so that they can make decisions and take
actions to successfully complete tasks and goals

•

Endowing the agent with the capability to make good decisions is

a
nontrivial issue

EnvironmentSensory information

Action

Structure of Agents

Agent = Architecture

+ Program

Implements Agent Function,
performs mapping of
percepts to actions

Computing device Running
Agent Program, with
sensors & actuators

Architectural Types
Agent Architectures

Reactive Agents
- No history
- No planning
- Responsive

Deliberative Agents
- Remember past
- Plan for future
- Might be slow

BDI Agent
- Based on what it
believes about the
present, past, and
future, makes plans
to achieve its goals

Agent Programs

•

Kinds of Agent Programs
–

Simple Reflex Agents

–

Model-based Reflex Agents
–

Goal Based Reflex Agents

–

Utility-based Reflex Agents

Perception

•

Now introduce perception

system:

Environment

Agent

see action

Perception
•

The see function is the agent’s ability to
observe its environment, whereas the
action function represents the agent’s
decision making process

•

Output

of the see function is a percept:
see : E → Per

which maps environment states to percepts,
and action is now a function

action : Per* → A
which maps sequences of percepts to

actions

A simple view of an agent
•

Environment states S={s1

, s2

, …}
•

Perception see:S→P

•

An agent has an internal state (IS) which is updated by
percepts:
next:IS

×P

→IS

•

An agent can choose an action from a set A={a1

, a2

, …}:
action:IS

→A

•

The effects of an agent’s actions are captured via the
function do:
do:A

×

S →S

Structure of an Intelligent Agent
•

All agents have the same basic structure:
–

accept percepts from environment

–

generate actions
•

A Skeleton Agent

Program:
•

Observations:
–

agent may or may not build percept sequence
in memory (depends on domain)

–

performance measure is not part of the agent;
it is applied externally to judge the success of
the agent

function Skeleton-Agent(percept) returns action
static: memory, the agent's memory of the world

memory ← Update-Memory(memory, percept)
action ← Choose-Best-Action(memory)
memory ← Update-Memory(memory, action)
return action

function Skeleton-Agent(percept) returns action
static: memory, the agent's memory of the world

memory ← Update-Memory(memory, percept)
action ← Choose-Best-Action(memory)
memory ← Update-Memory(memory, action)
return action

Table-driven agents (revised from
R&N)

LOOK-UP TABLE

Key value

Percept1 action1

Percept2 action2

…

KNOWLEDGE

Example: Vacuum Cleaner Agent

•

Percepts: location and contents, e.g., [A, Dirty]
•

Actions: Left, Right, Suck, NoOp

Looking Up the Answer?
•

A Template for a Table-Driven Agent:

•

Why can't we just look up the answers?
–

The disadvantages of this architecture
•

infeasibility (excessive size)
•

lack of adaptiveness
–

How big would the table have to be?
–

Could the agent ever learn from its mistakes?
–

Where should the table come from in the first place?

function Table-Driven-Agent(percept) returns action
static: percepts, a sequence, initially empty

table, a table indexed by percept sequences, initially fully specified

append percept to the end of percepts
action ← LookUp(percepts, table)

return action

function Table-Driven-Agent(percept) returns action
static: percepts, a sequence, initially empty

table, a table indexed by percept sequences, initially fully specified

append percept to the end of percepts
action ← LookUp(percepts, table)

return action

Agent Types
•

Simple reflex agents
–

are based on condition-action rules and implemented with
an appropriate production system. They are stateless
devices which do not have memory of past world states.

•

Reflex Agents with memory (Model-Based)
–

have internal state which is used to keep track of past states
of the world.

•

Agents with goals
–

are agents which in addition to state information have a kind
of goal information which describes desirable situations.
Agents of this kind take future events into consideration.

•

Utility-based agents
–

base their decision on classic axiomatic utility-theory

A Simple Reflex Agent

function Simple-Reflex-Agent(percept) returns action
static: rules, a set of condition-action rules

state ← Interpret-Input(percept)
rule ← Rule-Match(state, rules)
action ← Rule-Action[rule]
return action

function Simple-Reflex-Agent(percept) returns action
static: rules, a set of condition-action rules

state ← Interpret-Input(percept)
rule ← Rule-Match(state, rules)
action ← Rule-Action[rule]
return action

•

We can summarize
part of the table by
formulating
commonly occurring
patterns as
condition-action
rules:

•

Example:
if

car-in-front-brakes
then

initiate braking
•

Agent works by finding a
rule whose condition
matches the current
situation

rectangles the current internal state; Ovals background
information

A Reactive Agent in an Environment
Environment e;
RuleSet r;
while (true) {

state = senseEnvironment(e);
a = chooseAction(state, r);
e.applyAction(a);

}

What is an Intelligent Agent
•

Rationality depends on
–

the performance measure that defines degree of success
–

the percept sequence -

everything the agent has perceived so far
–

what the agent know about its environment
–

the actions that the agent can perform

•

Agent Function (percepts ==> actions)
–

Maps from percept histories to actions f: P* A

–

The agent program

runs on the physical architecture

to
produce the function f

–

agent = architecture + program

Action := Function(Percept Sequence)
If (Percept Sequence) then do Action

•

Example: A Simple Agent Function for Vacuum World

If (current square is dirty) then suck
Else move to adjacent square

Example: Simple Reflex Vacuum
Agent

Simple Reflex Agents: Remarks

•

Considers only the current percept, ignores rest
of percept history

•

Condition-action rules encoded
–

If car-in-front-is-braking

then initiate-braking

function Reflex-Vacuum-Agent ([location, status]) returns an action
If status=Dirty then return Suck
else if location=A then return Right
else if location=B return Left

function Simple-Reflex-Agent (percept) returns an action
static: rules, a set of condition-action rules

state Interpret-Input (percept)
rule Rule-Match (state, rules)
action Rule-Action [rule]

return action

rule-based systems
But, this only works if the current

percept is sufficient for making
the correct decision!

Simple reflex agents
Act only on the basis of the current percept.
The agent function is based on the
condition-action rule:

condition ⇒ action

Limited functionality:
Work well only when
•

the environment is fully observable and

•

the condition-action rules have predicted all
necessary actions.

	What did we learn?
	What is an Agent?
	What is an Agent?
	Reactivity
	Proactiveness
	Balancing Reactive and Goal-Oriented Behavior
	What is an Agent?
	Cognitive Architecture for an Agent
	Making decisions
	Structure of Agents
	Architectural Types
	Agent Programs
	Perception
	Perception
	A simple view of an agent
	Structure of an Intelligent Agent
	Table-driven agents (revised from R&N)
	Example: Vacuum Cleaner Agent
	Looking Up the Answer?
	Agent Types
	A Simple Reflex Agent
	A Reactive Agent in an Environment
	What is an Intelligent Agent
	Example: Simple Reflex Vacuum Agent
	Simple Reflex Agents: Remarks
	Simple reflex agents

