Agent Architectures

Hybrid Agents
Sources

- www.wirtschaft.tu-ilmenau.de/wi/wi2/SPP-Agenten/
- http://www.csc.liv.ac.uk/~mjw/pubs/imas
ASSIGNMENT

1. After reading these notes answer the following questions regarding *hybrid architectures* (one page max for all!)

 - How does the architecture distinguish between reaction and deliberation?
 - How does it organize responsibilities in the deliberative portion?
 - How does overall behavior emerge?

2. Draft an agent architecture for your project and bring it to class on a .ppt so you can describe it in 5 mins – making the point of what AI technologies you can use
Agent architectures

- Reactive Agents
- Deliberative Agents
- Hybrid Agents
- Interacting Agents
- Other Approaches
Hybrid architectures

• Combine **reactive** and **deliberative** components and form a hierarchy of interacting layers

• Each layer reasons at a different level of abstraction

• Two types of layering:
 – Horizontal layering
 – Vertical layering
Agent Architectures

Reactive Agent

• Each behaviour continually maps perceptual input to action output

• Reactive behaviour:
 action: S -> A
 • where S denotes the states of the environment, and A the primitive actions the agent is capable of perform.

• Example:

 action(s) = \begin{align*}
 \text{Heater on, if temperature too low} \\
 \text{Heater off, otherwise}
 \end{align*}
Agent Architectures

Reactive Agent

Agent

Stimulus-response behaviours

State$_1$ → Action$_1$
State$_2$ → Action$_2$
......
State$_n$ → Action$_n$

Sensors

Effectors
Agent Architectures

Reactive Agent

• Problems
 – a great deal of local information needed
 – learning?
 – Typically “handcrafted”
 • Development takes a lot of time
 • Impossible to build large systems?
 • Can be used only for its original purpose

• Examples
 – Brooks: subsumption architecture
 • ref: Http://ai.eecs.umich.edu/cogarch3/Brooks/Brooks.html
Agent Architectures

• Deliberative Agent
 – Explicit symbolic model of the world in which decisions are made via logical reasoning, based on pattern matching and symbolic manipulation
 – sense-plan-act problem-solving paradigm of classical AI planning systems
Agent Architectures

Deliberative Agent

Agent

Sensors

World Model

Planner

Plan executor

World Model Planner

executor

Effectors
Agent Architectures

Deliberative Agent

• Examples of deliberative architectures
 – BDI
 – Shoham: Agent-Oriented Programming
Agent Architectures

Deliberative Agent

- Performance problems
 - *transduction* problem
 - time consuming to translate all of the needed information into the symbolic representation, especially if the environment is changing rapidly.

 - *representation* problem
 - how the world-model is represented in symbolically and how to get agents to reason with the information in time for the results to be useful.

- Late results may be useless
- Does not scale to real-world scenarios
Agent Architectures

• Reactive agents have
 – at most a very simple internal representation of the world,
 – but provide tight coupling of perception and action
• Behaviour-based paradigm
• Intelligence is a product of interaction between an agent and its environment
• Do we really need abstract reasoning?
Agent Architectures

Hybrid Agent

Agent

Deliberative component

World Model → Planner → Plan executor

Reactive component

State₁ → Action₁
State₂ → Action₂
... → ...
Stateₙ → Actionₙ

Sensors

observations → modifications

World Model Planner executor

Effec tors
Deliberation v. Reaction as a function of TIME

• Past, Present, Future

• Reactive
 – exists in the PRESENT (will a bit of duration)

• Deliberative
 – can reason about the PAST
 – can project into the FUTURE
Agent Architectures

Hybrid Agent

• Combination of deliberative and reactive behaviour
 – An agent consists of several subsystems
 • Subsystems that develop plans and make decisions using symbolic reasoning (deliberative component)
 • Reactive subsystems that are able to react quickly to events without complex reasoning (reactive component)

• Layered architectures
Agent Architectures

Hybrid Agent

Sensor input → Layer₁ → Layer₂ → ... → Layerₙ → Action output

Sensor input → Layer₁ → Layer₂ → ... → Layerₙ → Action output
Reactive Agents

- Pattern 1
- Pattern 2
- Pattern n

- Plan 1
- Plan 2
- Plan n

Controller

Stimuli

Agent

Sensor

World

Effector
Deliberative Agents

Agent

Sensor

Cognition

Memory
Environment Model
Domain Knowledge

Inference Strategies
Goals
Utility Function
Interpretation
Planner

World

Effector
Hybrid Agents

Memory
Environment Model
Domain Knowledge

Inference Strategies
Goals
Utility Function
Interpretation
Planner

Cognition

Agent

Sensor
Stimuli
Pattern 1
Pattern 2
\vdots
Pattern n

Planes
Plan 1
\vdots
Plan n

Effector

World
Horizontal layering

- Each layer can act as an independent agent
- For n different behaviours n layers are implemented
- The layers compete with each other in order to take control of the agent; a mediator function can be introduced
Problems

• The layers’ competition for the agent’s control can cause incoherence

• Consistency can be achieved by introducing a function which achieves mediation between the layers

• Mediator function is exponentially complete: if there are n layers capable of suggesting m possible actions there are m^n interactions

• The mediator function or a central control system can introduce a bottleneck into the agent’s decision making
Example: TouringMachines

- Sensory input
- Modeling layer
- Planning layer
- Reactive layer
- Control rules
- Action output
The *reactive layer* is implemented as a set of situation-action rules, *a la* subsumption architecture.

Example:

```
rule-1: kerb-avoidance
    if
        is-in-front(Kerb, Observer) and
        speed(Observer) > 0 and
        separation(Kerb, Observer) < KerbThreshold
    then
        change-orientation(KerbAvoidanceAngle)
```

The *planning layer* constructs plans and selects actions to execute in order to achieve the agent’s goals.
The **modeling layer** contains symbolic representations of the ‘cognitive state’ of other entities in the agent’s environment.

The three layers communicate with each other and are embedded in a control framework, which use **control rules**

Example:

```plaintext
censor-rule-1:
    if
        entity(obstacle-6) in perception-buffer
    then
        remove-sensory-record(layer-R, entity(obstacle-6))
```
Reactive layer
• Acts as a reactive agent and responds to changes as they occur
• Implemented through situation-action rules
• There is no model of the environment in this layer

Planning layer
• Achieves the agent’s pro-active behaviour via plans based on a library of plan skeletons or schemas
Modelling layer

- Endows the agent with reflective and predictive capabilities
- Entities are modelled as having a configuration, beliefs, desires and intentions
- Generates goals to resolve conflicts which are then propagated to the planning layer

Control subsystem

- Decides which of the layers has control over the agent
- It is implemented via control rules which can either suppress sensor information between the control rules and the control layers or else censor action outputs from the control layers
Vertical layering

One-pass

Sensory input

Layer 1

Layer 2

Layer n

Action output

Two-pass

Sensory input

Layer 1

Layer 2

Layer n

Action output
Advantages

• Low complexity. If there are n layers there are $n-1$ interfaces between them. If each layer is capable of suggesting m possible actions then there are at most $m^2(n-1)$ interactions

• No central control, no bottleneck in the agent’s decision making

Problems

• Less flexible

• Not fault tolerant
Agent Architectures

Hybrid Agent

Agent

Deliberative component

World Model → Planner → Plan executor

Reactive component

State_1 → Action_1
State_2 → Action_2
...
State_n → Action_n

Sensors → observations to World Model

Effector → modifications to Plan executor

World Model Planner

Plan executor

Agent
Agent Architectures

Hybrid Agent

Sensor input → Layer₁ → Layer₂ → \ldots → Layerₙ → Action output

Sensor input → Layer₁ → \ldots → Layerₙ → Action output
Agent Architectures

Hybrid Agent
example - InteRRaP

Cooperation layer
Plan layer
Behaviour layer

Social knowledge
Planning knowledge
World model

World interface

Perceptual input
action output
Müller –InteRRaP

- Vertically layered, two-pass architecture

Diagram:

- cooperation layer
- plan layer
- behavior layer
- world model
- world interface
- social knowledge
- planning knowledge

Inputs:
- perceptual input

Outputs:
- action output
InteRRaP

- Cooperation planning layer
- Local planning layer
- Behaviour-based layer

World interface (WIF)

- Sensory information
- Action output

KB
- Social model
- Mental model
- World model

CU
- Social model
- Mental model
- World model

World interface (WIF)
Each layer consists of two subprocesses
- Situation recognition and goal activation process (SG)
- Planning, scheduling and execution process (PS)

Two main types of interactions take place between the layers:
- Activation requests (bottom up) which are issued when a lower layer passes control to a higher layer. The request is issued by the PS of layer i to the SG of layer $i+1$
- Commitment postings (top down) are sent from layer i to $i-1$ in order to achieve its goals. These are communicated between the PSs of the two layers
Status

- "toolbox" of agent architecture types available
- benchmarking of agent architectures?
- agent architecture design as an engineering discipline?
- (proven) standards for agent architectures?
- which architecture for which problem?
- agent architectures vs. related "non-agent" architectures (client/server, CORBA, etc.)?
- agent architectures vs. MA systems architectures?
Interacting Agents

World

Agent Coordination Agent

Agent Interaction Agent