HOLONIC SELF-ORGANIZATION OF MULTI-AGENT SYSTEMS BY FUZZY MODELING WITH APPLICATION TO INTELLIGENT MANUFACTURING
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Abstract – Holonic manufacturing aims to design standardized, modular manufacturing systems made of interchangeable parts, to enable flexibility, on-line reconfigurability and self-organizing capabilities for the production systems. Recent advances in Distributed Artificial Intelligence and Networking Technologies have proven that the theoretical Multi-Agent Systems (MAS) concepts are very suitable for the real life implementation of holonic concepts. Building on our recent results in the design and implementation of holonic reconfigurable architectures, this paper introduces a novel approach to the on-line self-organization of distributed systems. By using fuzzy set and uncertainty theoretical concepts, we construct a mathematical foundation for modeling MAS, where appropriate holonic structures are identified for each particular application. This approach opens new possibilities for the design of any distributed system that needs self-organization as an intrinsic property.
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I. Introduction


The requirements for 21st Century manufacturing necessitate decentralized manufacturing facilities whose design, implementation, reconfiguration, and manufactur-ability allows the integration of production stages in a dynamic, collaborative network. Such facilities can be realized through agent-oriented approaches [12] using knowledge sharing technology [9]. 


Especially the self-organization property requires new and improved approaches to distributed intelligence and knowledge management. At the University of Calgary, a number of research projects have been undergoing in this direction since 1991 (see an overview in [7]). The essence of this research is encapsulated in the development of a Metamorphic, self-organizing architecture which comprises planning, control and application agents that collaborate to satisfy both local and global objectives. The self-organization property is implemented through virtual clusters of agents dynamically created, modified, and destroyed as needed for collaborative planning and action on tasks (Figure 1). Mediator agents coordinate activities both within clusters and across clusters [5].

Figure 1. Virtual clustering mechanism.


Mediators acting at the corresponding information level initially decompose high-level tasks (Figure 2). Each subtask is subsequently distributed to determine the best solution plan. Mediators learn dynamically from the agent interactions and identify coalitions that can be used to establish distributed searches for the resolution of tasks.
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Figure 2. Task decomposition mechanism.

II. Holonic Clustering in MetaMorph

(a)
Holonic Manufacturing Systems


The Hungarian author and philosopher Arthur Koestler proposed the word "holon" to describe a basic unit of organization in biological and social systems [4]. A holon, as Koestler devised the term, is an identifiable part of a system that has a unique identity, yet is made up of sub-ordinate parts and in turn is part of a larger whole. The word "holonic" is used to characterize the relationships between elements of a system. Autonomy and [image: image174.wmf]5

Task

Sub-Task

Sub-Task

Sub-Task

Machine1

Machine2

Tool1

Tool2

Virtual

Cluster 1

Virtual

Cluster 2

Task Decomposition

Partial Cloning

Partial Cloning

cooperativeness characterize these relationships. Holons are more structured agents which act synergistically with other holon-type agents, as they behave simultaneously as autonomous (sub) wholes and as dependable parts. Endorsed by the Intelligent Manufacturing Systems (IMS) Steering Committee in May 1995 [8], the Holonic Manufacturing Systems (HMS) project (www.ims.org) aims to translate the concepts that Koestler developed for social organizations and living organisms into a set of appropriate concepts for manufacturing industries, e.g., stability in the face of disturbances, adaptability and flexibility in the face of change, and efficient use of available resources [1], [6]. The concept of holonic self-organization combines the best features of hierarchical ("top down") and heterarchical ("bottom up", "cooperative") organizational structures by clustering the entities of the system into nested hierarchies [2] (Figure 3).
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Figure 3. Machine grouping by dynamic virtual clustering.

(b)
Holonic Metamorphic Architecture


As members of the HMS consortium, our work has been focused on finding ways to dynamically reconfigure the Metamorphic architecture on-line into holonic structures [13] (Figure 3). Agents are dynamically contracted to participate in a problem-solving group (cluster). In case of the situations where the agents in cluster are only able to partially complete the task’s requests, the agents will seek outside their cluster and establish conversation links with the agents in other clusters. This process is repeated, with sub-clusters being formed and then sub-sub-clusters etc as needed within a dynamically inter-linked structure [15], like in Figure 3. As the respective tasks and subtasks are solved, the related clusters and links are dissolved. However, mediators will store the most relevant links with associated task information for future re-use. This holonic clustering capability provides scalability and aggregation properties to the system. 


The complex tasks of planning, scheduling and control are distributed among three layers (see Figure 4): Control Planning (CP), Execution Control (EC) and Control Execution (CE). Each layer consists of several agents which collaborate and negotiate with each other to complete control tasks with global requirements [15].

Figure 4. Functional layers in Meta-Morph.
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Figure 5. Controller sub-clusters (CC,CE,EC).

Figure 5 illustrates how physical and logical machine groups are derived via group-technology approaches. The necessary control structures are created and configured using control components cloned from template libraries by a Dynamic mediator Holon (DMH) – as shown in Figure 2. The machine groups, their associated and configured controllers, then form a temporary manufacturing community, termed a virtual cluster holon (VCH) as shown in Figure 5. The life cycle of a dynamic virtual cluster holon has four stages: resource grouping; control components creation; execution processing; and termination/destruction. The Dynamic Mediator Holon is involved in the stages 1 and 2. The first cluster that is created is the schedule-control cluster shown in Figure 3. A cluster can be also considered to be a holonic grouping. The Controller Cluster next created is composed of three holonic parts (Figures 4 and 5): Collaboration Controller (CC), Execution Controller (EC), and Control Execution (CE) holon. One CE holon can be associated with more than one physical controller (execution platform such as real-time operation system and its hardware support devices) and appears like a distributed-node transparent-resource platform for execution of cluster control tasks at the resource level [15], [14]. 


The dynamic characteristics of the event-driven holon community become more complicated when the population grows. In the next section, we present a solution for automatic grouping into holonic clusters depending on the assigned task, which, due to its mathematical foundation, works for high size multi-agent systems. 

III. Fuzzy Modeling of Holonic Self-Organization

(a)
General statement of the problem


Consider a MAS which evolves transitioning from an initial state through a chain of intermediate states until it reaches its goal in a final state. As mentioned, its agents associate in groups referred to as clusters. Each cluster is aiming to solve a certain part of the overall task assigned to the MAS. Let us consider now the set of all agents within a MAS. Each possible structure of clusters that covers the agents set points to a partition of this set, if clusters are not overlapping, or to a cover, when different clusters contain the same agent. Such a partition/cover will be referred hereafter to as (clustering) configuration. We name plan the succession of all states through which MAS transitions until it reaches its goal. Each MAS state is described by a certain clustering configuration covering the agent set. So, in this context, a plan is a succession of such configurations describing the MAS clustering dynamics. 


One can hardly predict the dynamics of clustering configurations during MAS evolution towards its goal. For this prediction we rely only on uncertain information determined through observations, experiments and/or through simple deductions based on the agents structure (similar to how their PAGE descriptions are determined - see [10]). When trying to deal with the uncertainty in the available information about MAS clustering dynamics, we will deal first with its aspect of vagueness.


It is already well known that among the other measures of uncertainty [3], vagueness deals with information that is inconsistent. In the context of our MAS problem, this means that we don’t know exactly in which succession the clusters dynamically partition the agent set during MAS evolution from its initial state to a final one (when the goal is reached). All we can do is assign a “degree of occurrence” at a given time, for each possible partition supposed to occur at that time. Thus, the problem we intend to solve is the following: Given a MAS and some vague information about its virtual clustering mechanism (for a certain goal), construct a fuzzy model providing one of the least uncertain (vague) successions of clustering configurations.
(b)
Mathematical statement of the problem
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In this framework, we aim to construct a measure of uncertainty, 
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(c)
Construction of the least vague source-plan


The solution proposed here is based on the Theory of fuzzy sets and uses measures of fuzziness [3] to model the vagueness aspect of the uncertainty in the initial information about MAS behavior. The optimization problem stated in (1) is solved within the next four steps.

Step 1: Build a family of fuzzy relations 
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Associating agents in clusters is very similar to grouping them into compatibility or equivalence classes, given a (binary) crisp relation between them. The compatibility (reflexivity and symmetry) is achieved in the case of covers (overlapped clusters), whereas the equivalence (compatibility and transitivity) corresponds to partitions. It is, thus, naturally to consider that every configuration covers 
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This matrix is symmetric, with unitary diagonal and defines uniquely the configuration 
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 (see Theorem 1). 

Theorem 1. Let 
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This result shows, in fact, that the relation 
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Consider now a source-plan 
[image: image55.wmf]k

P

, for an arbitrarily fixed 
[image: image56.wmf]K

k

,

1

Î

 and extract freely a configuration 
[image: image57.wmf]m

k

P

,

 (
[image: image58.wmf]k

M

m

,

1

Î

). The assigned degree of occurrence is then 
[image: image59.wmf]m

k

,

a

, whereas the characteristic matrix of the associated crisp relation is 
[image: image60.wmf]m

k

H

,

 of (3). In this context, one can construct first the fuzzy relation 
[image: image61.wmf]m

k

m

k

R

,

,

a

 (defined on 
[image: image62.wmf]N

N

A

A

´

), whose membership matrix is expressed as 
[image: image63.wmf]m

k

m

k

H

,

,

a

. Then, the fuzzy relation 
[image: image64.wmf]k

R

 uniquely associated to the source plan 
[image: image65.wmf]k

P

 is simply the fuzzy union of all above fuzzy relations: 


[image: image66.wmf]U

k

M

m

m

k

m

k

k

R

1

,

,

=

=

a

R

.
(4)

If max fuzzy union is employed in (4), the 
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where “
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Notice that the crisp relation expressed by 
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Given that all crisp relations are at least compatibility type, it is easy to prove that the fuzzy relations 
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 are at least proximity type (fuzzy reflexive and symmetric). They could be similarity relations (proximity and fuzzy transitive [3]), but it is also possible that they do not be fuzzy transitive, even if all crisp relations are equivalence ones. Similarity is however important, because it can reveal the holonic behavior of MAS. 

Step 2: Construct a measure of fuzziness over the above fuzzy relations. This measure will be used to select the “minimally fuzzy” relation of the set 
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One very important class consists of measures that evaluate “the fuzziness” of a fuzzy set by taking into consideration both the set and its (fuzzy) complement. From this large class, we have selected the Shannon measure, constructed starting from the multi-dimensional Shannon’s function of equation (6). It has a unique maximum (equal by 
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Figure 6. Shannon’s function for 
[image: image87.wmf]2

=

M

.


When the argument of function (6) is a probability distribution, it is referred to as Shannon entropy [3]. When the argument is a membership function defining a fuzzy set, it is refereed to as Shannon fuzzy entropy [16]. Denote the fuzzy entropy by 
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where 
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Two main reasons motivate this choice. First, 
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 computes the quantity of information of an informational entity, say a fuzzy set, as the estimated uncertainty that the entity contains, the minimally fuzzy sets will subsequently contain the minimally uncertain information. (Notice, however, that only the vagueness facet of the uncertainty is measured here. Ambiguity requires more sophisticated measures.) Secondly, the “total ignorance” (or uncertain) information is pointed out by the unique maximum of 
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Moreover, a force driving towards knowledge can be determined by computing the gradient of Shannon fuzzy entropy. It is interesting to remark that the amplitude of this force (its norm), expressed as:



[image: image98.wmf]å

å

=

=

ú

û

ù

ê

ë

é

-

=

Ñ

N

i

N

j

k

k

k

j

i

j

i

S

1

1

2

2

]

,

[

]

,

[

1

log

)

(

M

M

R

m

,
(8)

increases very fast in the vicinity of any “perfect knowledge” point.

Step 3: Construct the required measure of uncertainty, 
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According to Step 2, 
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b)
constructing another source-plans starting not from 
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There is a reason for the second option. Usually, the initial available information about MAS is so vague that it is impossible to construct even consistent source-plans. This is the case, for example, when all we can set are the degrees of occurrence corresponding to clusters created only by couples of agents. It is suitable to point out at least a consistent source-plan to solve the problem. 


The main idea in constructing different source-plans is to evaluate the 
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 and to arrange them in decreasing order of membership grades. This ordering is the unique we can specify starting from the initial information about MAS. Since the time dimension of MAS evolution was not taken into consideration when constructing the model, no time ordering criterion is yet available. Thus, basically, plans are not constructible with this model. However, it is possible that a plan be coincident with the source-plan generated in this manner (especially when the relation is a similarity one). 


Two categories of source-plans can be generated using the 
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-cuts of 
[image: image117.wmf]0

k

R

: equivalence or holonic source-plans (when 
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 is a similarity relation) and compatibility source-plans (when 
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 is a proximity relation). 


When the associated fuzzy relation 
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 is a similarity one, then an interesting property of the MAS is revealed: clusters are associated in order to form new clusters, as in a “clusters within clusters” holonic-like paradigm [1], [4], [6]. Moreover, the (unique) similarity relation 
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 can be constructed starting from the proximity relation 
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, by computing its transitive closure, following the procedure described in [3]. The new relation 
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 is similarity one. This was proven by means of the following result: 

Theorem 2. Let 
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, that is: 
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1. If 
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2. If 
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are symmetric relations, 
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 is symmetric. 

3. If 
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 and 
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 is transitive relation, 
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 is transitive.


This important result gives the mathematical framework for identifying holonic (potential) structure within a MAS, even it seems to evolve in a non holonic manner. 


When 
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 is only a proximity relation, tolerance (compatibility) classes can be constructed as collections of eventually overlapping clusters (covers). This time, the fact that clusters could be overlapped (i.e. one or more agents can belong to different clusters simultaneously) reveals the capacity of some agents to play multiple roles by being involved in several tasks at the same time. 

IV. Simulation Results


Consider a MAS with 
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 agents: one manager (
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), two executive agents (
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 and 
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) and four resource agents (
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, 
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, 
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 and 
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)2. Then the procedure starts from very parsimonious information about clusters created by couples of agents. Every degree of occurrence is associated with only a pair of agents. Although this information is quite vague, holonic plans are still constructed.
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One constructs first the corresponding fuzzy relation 
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 between the 7 agents with membership symmetric matrix 
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 depicted below. 


A first interesting aspect is revealed by looking on the 4th line: the manager is tempted to work in association with the executive 
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 (0.4797) rather than with 
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 (0.4780), but he is also oriented to solve problems by itself, with the resource 
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 (0.4888).


Then, since this relation is only proximity one, its transitive cover 
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 is generated. As mentioned, 
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 is a similarity relation between agents. In membership matrix 
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 only 6 non-unitary largest occurrence degrees remained (and the smallest 15 vanished): 
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Two source-plans (different from the initial one) could be generated: one emerging from 
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 and including (tolerance) covers (with overlapped clusters) and another from 
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, including partitions (with disjoint clusters). But the holonic source-plan is the most interesting, since a real plan could be proposed, by ordering its configurations in decreasing order of the 6 occurrence degrees above. This plan is represented in Figure 7. 
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Figure 7. Holonic self-organization example.


The simulations showed how the final holonic behavior emerged. Moreover the nature of the agents (i.e. if they are resource or manager’s interface agents, etc.) has been identified without any prior knowledge about the agents type. The holonic behavior can be observed for the equivalence source-plan: clusters associate together in order to form larger clusters and, finally, the whole agents set is grouped in one single cluster. 


In our case study, a possible holonic plan could be the following (starting from the corresponding holonic source-plan). First, the manager states a goal. Immediately, the executives 
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 and 
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 reach for resources 
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, and, respectively, 
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. The executive 
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 realizes that he needs more resources and he starts to use both 
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 and 
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. The next step shows that the two executives associate together (including their resources) in order to reach the goal. The manager associates to them only in the final phase, when the goal is reached. 


The Shannon fuzzy entropy (7) has the value 
[image: image169.wmf]6784

.

36

)

(

=

R

m

S

 (of maximum 
[image: image170.wmf]49

) for this relation, whereas the amplitude of force towards knowledge (8) is, in this case, 
[image: image171.wmf]2942

.

12

)

(

=

Ñ

R

m

S

. 

V. Conclusion


This papers introduces a methodology for holonic self-organization of distributed intelligent systems, which builds on theoretical concepts from Distributed Artificial Intelligence and Fuzzy Sets Theory. The method is useful in any application which requires on-line reconfiguration of distributed intelligent systems, such as automated assembly lines in manufacturing production, intelligent supply-chain management, and any web-centric enterprise application (E-commerce, ERP in global manufacturing, etc.). We are in the process of testing the method on a supply-chain application for a global manufacturing ranging from high-level production order to the low control of production resources/machines level.

VI. References


[1]
Christensen J.H. – Holonic Manufacturing Systems: Initial Architecture and Standard Directions – First European Conference on HMS, Hanover, Germany, 1994. 


[2]
Dilts, D.M., Boyd, Whorms N.P. – The Evolution of Control Architectures for Automated Manufacturing Systems, Journal of Manufacturing Systems, Vol. 10, No. 1, 1991.


[3]
Klir G.J., Folger T.A. – Fuzzy sets, Uncertainty, and Information, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1988.


[4]
Koestler A. – The Ghost in the Machine, Arkana Books, London, U.K., 1967.


[5]
Maturana F., Norrie D.H. – Multi-Agent Coordination Using Dynamic Virtual Clustering in a Distributed Manufacturing System, Proc. of IERC5, Minneapolis, 473-478, May 18-20, 1996.


[6]
Norrie D.H., Gaines B. – Distributed Agents Systems for Intelligent Manufacturing, Canadian Artificial Intelligence, No. 40, 31-33, 1996.


[7]
Norrie D.H., Shen W. – Applications of Agent technology for Agent-Based Intelligent Manufacturing Systems, Proceedings of IMS’99, Leuven, Belgium, 1999. 


[8]
Parker M. – The IMS Initiative, Manufacturing Engineer, February 1997.


[9]
Patil R., Fikes R., Patel-Schneider P., Mckay D., Finin T., Gruber T., Neches R. The DARPA Knowledge Sharing Effort: Progress Report, Rich, C., Nebel, B., and Swartout, W. (eds.), Principles of Knowledge Representation and Reasoning, Proceedings of the Third International Conference, Cambridge, MA, Morgan Kaufmann, 1992. 


[10]
Russell S., Norvig P. – Artificial Intelligence – A Modern Approach, Prentice Hall, New Jersey, USA, 1995.


[11]
Subramanian R., Ulieru M. – An Approach to the Modeling of Multi-Agent Systems as Fuzzy Dynamical Systems, International Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany, August 2-7, 1999. 


[12]
Wooldridge M., Jennings N.R. – Intelligent Agents: Theory and Practice, The Knowledge Engineering Review, Vol. 10, No. 2, 115-152, 1995.


[13]
Zhang X., Norrie D.H. – Dynamic reconfiguration of holonic lower level control, IPMM’99, Hawaii, 1999.


[14]
Zhang X., Norrie D.H. – Holonic Control at the Production and Controller Levels, IMS 99, Leuven, Belgium, Sept. 22-24, 1999.


[15]
Zhou B., Wang L., Norrie D.H. – Design of distributed real-time control agents for intelligent manufacturing systems, IMS 99, Leuven, Belgium, Sept. 22-24, 1999.


[16]
Zimmermann H.J. – Fuzzy Set Theory And Its Applications, Kluwer Academic Publishers, Boston, USA, 1991.

� EMBED Word.Picture.8  ���





1.0000�
0.5402�
0.6343�
0.1877�
0.3424�
0.2001�
0.4863�
�
0.5402�
1.0000�
0.3561�
0.4797�
0.7651�
0.2092�
0.2794�
�
0.6343�
0.3561�
1.0000�
0.4780�
0.1389�
0.6858�
0.6414�
�
0.1877�
0.4797�
0.4780�
1.0000�
0.3191�
0.4888�
0.3347�
�
0.3424�
0.7651�
0.1389�
0.3191�
1.0000�
0.2784�
0.4291�
�
0.2001�
0.2092�
0.6858�
0.4888�
0.2784�
1.0000�
0.1666�
�
0.4863�
0.2794�
0.6414�
0.3347�
0.4291�
0.1666�
1.0000�
�






1.0000�
0.5402�
0.6343�
0.4888�
0.5402�
0.6343�
0.6343�
�
0.5402�
1.0000�
0.5402�
0.4888�
0.7651�
0.5402�
0.5402�
�
0.6343�
0.5402�
1.0000�
0.4888�
0.5402�
0.6858�
0.6414�
�
0.4888�
0.4888�
0.4888�
1.0000�
0.4888�
0.4888�
0.4888�
�
0.5402�
0.7651�
0.5402�
0.4888�
1.0000�
0.5402�
0.5402�
�
0.6343�
0.5402�
0.6858�
0.4888�
0.5402�
1.0000�
0.6414�
�
0.6343�
0.5402�
0.6414�
0.4888�
0.5402�
0.6414�
1.0000�
�






�EMBED Word.Picture.8���








(1 The University of Calgary, Faculty of Engineering, Electrical and Computer Engineering Department, 2500 University Drive NW, Calgary, AB T2N 1N4, CANADA.	WEB: � HYPERLINK http://www.isg.enme.ucalgary.ca ��www.isg.enme.ucalgary.ca�.


Tel. 1-403-2204875; Fax. 1-403-2826855	E-mail: � HYPERLINK mailto:ulieru@enme.ucalgary.ca ��ulieru@ucalgary.ca�


2	Notice that the nature of these agents are initially unknown. It was revealed only after the vagueness minimization procedure has been run.





_1018539206.unknown

_1018539676.unknown

_1018541432.unknown

_1018541722.unknown

_1018541898.unknown

_1018541954.unknown

_1018543573.unknown

_1018543923.unknown

_1018712099.unknown

_1018543597.unknown

_1018542128.unknown

_1018542160.unknown

_1018542446.unknown

_1018541966.unknown

_1018541932.unknown

_1018541943.unknown

_1018541906.unknown

_1018541849.unknown

_1018541881.unknown

_1018541767.unknown

_1018541585.unknown

_1018541660.unknown

_1018541690.unknown

_1018541638.unknown

_1018541460.unknown

_1018541479.unknown

_1018541443.unknown

_1018540630.unknown

_1018540716.unknown

_1018540855.unknown

_1018541404.unknown

_1018541413.unknown

_1018541422.unknown

_1018541405.unknown

_1018540872.unknown

_1018541384.unknown

_1018541393.unknown

_1018540883.unknown

_1018541364.unknown

_1018540888.unknown

_1018540880.unknown

_1018540864.unknown

_1018540868.unknown

_1018540860.unknown

_1018540801.unknown

_1018540847.unknown

_1018540851.unknown

_1018540804.unknown

_1018540742.unknown

_1018540745.unknown

_1018540738.unknown

_1018540668.unknown

_1018540708.unknown

_1018540712.unknown

_1018540672.unknown

_1018540640.unknown

_1018540643.unknown

_1018540636.unknown

_1018539718.unknown

_1018540613.unknown

_1018540621.unknown

_1018540624.unknown

_1018540616.unknown

_1018539725.unknown

_1018539958.unknown

_1018539722.unknown

_1018539692.unknown

_1018539703.unknown

_1018539713.unknown

_1018539696.unknown

_1018539702.unknown

_1018539684.unknown

_1018539688.unknown

_1018539680.unknown

_1018539582.unknown

_1018539622.unknown

_1018539663.unknown

_1018539670.unknown

_1018539673.unknown

_1018539666.unknown

_1018539656.unknown

_1018539659.unknown

_1018539653.unknown

_1018539605.unknown

_1018539615.unknown

_1018539618.unknown

_1018539610.unknown

_1018539594.unknown

_1018539598.unknown

_1018539591.unknown

_1018539299.unknown

_1018539331.unknown

_1018539340.unknown

_1018539578.unknown

_1018539336.unknown

_1018539312.unknown

_1018539328.unknown

_1018539303.unknown

_1018539242.unknown

_1018539255.unknown

_1018539295.unknown

_1018539250.unknown

_1018539218.unknown

_1018539236.unknown

_1018539211.unknown

_1018537628.unknown

_1018538044.unknown

_1018539121.unknown

_1018539137.unknown

_1018539151.unknown

_1018539170.unknown

_1018539143.unknown

_1018539130.unknown

_1018539133.unknown

_1018539126.unknown

_1018538066.unknown

_1018538209.unknown

_1018538387.unknown

_1018538075.unknown

_1018538057.unknown

_1018538061.unknown

_1018538049.unknown

_1018537878.unknown

_1018537897.unknown

_1018537924.unknown

_1018538040.unknown

_1018537902.unknown

_1018537885.unknown

_1018537894.unknown

_1018537882.unknown

_1018537690.unknown

_1018537860.unknown

_1018537874.unknown

_1018537717.unknown

_1018537636.unknown

_1018537685.unknown

_1018537632.unknown

_1018537214.unknown

_1018537542.unknown

_1018537591.unknown

_1018537614.unknown

_1018537624.unknown

_1018537596.unknown

_1018537583.unknown

_1018537587.unknown

_1018537575.unknown

_1018537487.unknown

_1018537495.unknown

_1018537499.unknown

_1018537490.unknown

_1018537223.unknown

_1018537481.unknown

_1018537218.unknown

_1018536947.unknown

_1018537180.unknown

_1018537205.unknown

_1018537209.unknown

_1018537191.unknown

_1018536988.unknown

_1018536992.unknown

_1018536972.unknown

_1018536956.unknown

_1018536925.unknown

_1018536938.unknown

_1018536942.unknown

_1018536931.unknown

_1018536914.unknown

_1018536920.unknown

_1012042582.unknown

_1018536850.unknown

_1005575577.doc
[image: image1.png]sixtae)

i

e

i
R
AR
i

N L

s
i
i
L





(a)



_1006176615.doc
[image: image1.wmf]1


a


[image: image2.wmf]7


a


[image: image3.wmf]2


a


[image: image4.wmf]4


a


[image: image5.wmf]5


a


[image: image6.wmf]6


a


[image: image7.wmf]7


a


[image: image8.wmf]3


a


[image: image9.wmf]5


2


a


a


[image: image10.wmf]7


6


3


1


a


a


a


a


[image: image11.wmf]4


a


[image: image12.wmf]1


a


[image: image13.wmf]5


2


a


a


[image: image14.wmf]6


3


a


a


[image: image15.wmf]4


a


[image: image16.wmf]7


6


5


3


2


1


a


a


a


a


a


a


[image: image17.wmf]7


6


5


4


3


2


1


a


a


a


a


a


a


a


[image: image18.wmf]4


a




� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



( (







� EMBED Equation.3  ��� 



( ( ( (







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



( (







� EMBED Equation.3  ���  



( (







� EMBED Equation.3  ���



(







� EMBED Equation.3  ���



( ( ( ( ( (







� EMBED Equation.3  ���



( ( ( ( ( ( (







� EMBED Equation.3  ���



(















_1006168720.unknown



_1006169096.unknown



_1006170871.unknown



_1006171132.unknown



_1006172030.unknown



_1006172836.unknown



_1006171355.unknown



_1006170999.unknown



_1006169536.unknown



_1006168742.unknown



_1006168752.unknown



_1006168731.unknown



_1006165124.unknown



_1006165161.unknown



_1006164942.unknown




